This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351736 #21 Aug 29 2022 16:35:51 %S A351736 1,0,4,12,80,560,4512,40768,407808,4453632,52605440,667234304, %T A351736 9032423424,129822564352,1972450443264,31559866736640,530043925495808, %U A351736 9317136303718400,170976603113127936,3268020569256755200,64928967058257346560,1338431135849666052096 %N A351736 Expansion of e.g.f. exp( x * (exp(2 * x) - 1) ). %H A351736 Seiichi Manyama, <a href="/A351736/b351736.txt">Table of n, a(n) for n = 0..488</a> %F A351736 a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-k) * Stirling2(n-k,k)/(n-k)!. %F A351736 From _Seiichi Manyama_, Aug 29 2022: (Start) %F A351736 a(n) = Sum_{k=0..n} (2*k-1)^(n-k) * binomial(n,k). %F A351736 G.f.: Sum_{k>=0} x^k / (1 - (2*k-1)*x)^(k+1). (End) %o A351736 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x*(exp(2*x)-1)))) %o A351736 (PARI) a(n) = n!*sum(k=0, n\2, 2^(n-k)*stirling(n-k, k, 2)/(n-k)!); %o A351736 (PARI) a(n) = sum(k=0, n, (2*k-1)^(n-k)*binomial(n, k)); \\ _Seiichi Manyama_, Aug 29 2022 %o A351736 (PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-(2*k-1)*x)^(k+1))) \\ _Seiichi Manyama_, Aug 29 2022 %Y A351736 Cf. A052506, A351737. %Y A351736 Cf. A053491, A351733. %K A351736 nonn %O A351736 0,3 %A A351736 _Seiichi Manyama_, May 20 2022