This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351741 #22 Mar 31 2022 22:00:13 %S A351741 1,3,4,5,7,10,13,16,23,26,31,32,37,39,51,54,56 %N A351741 Numbers k such that the concatenation of 1,2,...,k and the concatenation of k,k-1,...,1 have the same number of prime factors, counted with multiplicity. %C A351741 Numbers k such that A001222(A007908(k)) = A001222(A000422(k)). %e A351741 a(3) = 4 is a term because 1234 = 2*617 and 4321 = 29*149 each have two prime factors. %p A351741 dcat:= (a,b) -> a*10(1+ilog10(b))+b: %p A351741 a:= 1: b:= 1: R:= 1: %p A351741 for n from 2 to 40 do %p A351741 a:= dcat(n,a); %p A351741 b:= dcat(b,n); %p A351741 if numtheory:-bigomega(a) = numtheory:-bigomega(b) then R:= R,n fi %p A351741 od: %p A351741 R; %t A351741 Select[Range[32], SameQ @@ PrimeOmega@{FromDigits@ Flatten@ #, FromDigits@ Flatten@ Reverse[#]} &@ IntegerDigits@ Range[#] &] (* _Michael De Vlieger_, Feb 17 2022 *) %o A351741 (Python) %o A351741 from sympy import primeomega %o A351741 def afind(limit, startk=1): %o A351741 k = startk %o A351741 sk = "".join(str(i) for i in range(1, k)) %o A351741 skr = "".join(str(i) for i in range(k-1, 0, -1)) %o A351741 for k in range(startk, limit+1): %o A351741 sk += str(k) %o A351741 skr = str(k) + skr %o A351741 if primeomega(int(sk)) == primeomega(int(skr)): %o A351741 print(k, end=", ") %o A351741 afind(23) # _Michael S. Branicky_, Feb 17 2022 %Y A351741 Cf. A000422, A001222, A007908, A048288. %K A351741 nonn,base,more %O A351741 1,2 %A A351741 _J. M. Bergot_ and _Robert Israel_, Feb 17 2022 %E A351741 a(17) from _Michael S. Branicky_, Feb 19 2022