A351743 a(1)=1. Thereafter, a(n+1) is the greatest divisor of s(n) which is prime to a(n), where s(n) is the n-th partial sum.
1, 1, 2, 1, 5, 2, 3, 5, 4, 3, 1, 28, 1, 57, 2, 29, 5, 6, 13, 1, 170, 1, 341, 2, 171, 5, 172, 3, 115, 2, 9, 43, 28, 11, 113, 12, 19, 73, 20, 37, 41, 38, 21, 11, 148, 3, 593, 4, 297, 1, 2674, 1, 5349, 2, 2675, 1, 13376, 1, 26753, 2, 13377, 5, 13378, 3, 991, 82, 31
Offset: 1
Keywords
Examples
a(5)=5, a prime, and s(5)=10=2*5 so a(6)=10/5=2. a(19)=13, a prime and s(19)=169=13^2, so a(20)=1. a(24)=2, prime, and s(24)=684=2^2*171, so a(25)=171. a(49)=297=3^3*11, and s(49)=2673=3^5*11 so a(50)=1. a(150)=473394=2*3*257*307, s(150)=2840364=2^2*3^2*257*307. Since these two numbers have the same squarefree kernel, a(151)=1, then a(152)=2840365 (odd), a(153)=2.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Annotated log-log scatterplot of a(n), n = 1..150, showing records in red, highlighting primes in green, composite prime powers in magenta, and fixed points in gold.
Programs
-
Mathematica
nn = 120; a[1] = m = s = 1; Do[k = s; While[GCD[m, k] > 1, k /= GCD[m, k]]; m = a[n] = k; s += k, {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Jun 20 2022, after PARI *)
-
PARI
{ s=0; for (n=1, 67, if (n==1, v=1, w=s; while (1 < g=gcd(w,v), w /= g); v=w); s+=v; print1 (v", ")) } \\ Rémy Sigrist, Jun 19 2022
Formula
If a(n) = prime p, then a(n+1) = s(n)/p^k, where k is the greatest power of p dividing s(n), and if a(n)^k = s(n) then a(n+1)=1.
Conjectures from Rémy Sigrist, Jun 20 2022: (Start)
- a(2*(n+21)-1) = a(2*n-1) for n >= 70,
- a(2*(n+21)) = 3645*a(2*n) + b(n) for n >= 70 (where b is 21-periodic).
(End)
Extensions
More terms from Michael De Vlieger, Jun 08 2022
Comments