cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351755 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 * A(x/(1 - x)) / (1 - x)^2.

This page as a plain text file.
%I A351755 #5 Feb 19 2022 13:54:27
%S A351755 1,1,1,1,1,1,1,3,7,15,31,63,127,257,535,1187,2891,7751,22331,66997,
%T A351755 204473,626917,1922395,5899579,18192715,56739881,180434023,590010059,
%U A351755 1997588833,7026454733,25650892255,96720885037,374163527473,1475021500693,5893462132221
%N A351755 G.f. A(x) satisfies: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 * A(x/(1 - x)) / (1 - x)^2.
%F A351755 a(0) = ... = a(5) = 1; a(n) = Sum_{k=0..n-6} binomial(n-5,k+1) * a(k).
%t A351755 nmax = 34; A[_] = 0; Do[A[x_] = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 A[x/(1 - x)]/(1 - x)^2 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%t A351755 a[n_] := a[n] = If[n < 6, 1, Sum[Binomial[n - 5, k + 1] a[k], {k, 0, n - 6}]]; Table[a[n], {n, 0, 34}]
%Y A351755 Cf. A040027, A210543, A351437, A351660, A351707, A351754.
%K A351755 nonn
%O A351755 0,8
%A A351755 _Ilya Gutkovskiy_, Feb 18 2022