cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351785 Symmetric array T(n, k), n, k >= 0, read by antidiagonals; for any m >= 0 with binary expansion Sum_{i >= 0} b_i*2^i, let d(m) = Sum_{i >= 0} b_i * 2^A130472(i); let t be the inverse of d; T(n, k) = t(d(n) + d(k)).

This page as a plain text file.
%I A351785 #11 Feb 23 2022 10:51:10
%S A351785 0,1,1,2,4,2,3,3,3,3,4,6,1,6,4,5,5,4,4,5,5,6,16,6,5,6,16,6,7,7,7,7,7,
%T A351785 7,7,7,8,18,5,18,16,18,5,18,8,9,9,16,16,17,17,16,16,9,9,10,12,10,17,
%U A351785 18,20,18,17,10,12,10,11,11,11,11,19,19,19,19,11,11,11,11
%N A351785 Symmetric array T(n, k), n, k >= 0, read by antidiagonals; for any m >= 0 with binary expansion Sum_{i >= 0} b_i*2^i, let d(m) = Sum_{i >= 0} b_i * 2^A130472(i); let t be the inverse of d; T(n, k) = t(d(n) + d(k)).
%C A351785 The function d is a bijection from the nonnegative integers to the nonnegative dyadic rationals satisfying d(A000695(n)) = n for any n >= 0.
%H A351785 Rémy Sigrist, <a href="/A351785/b351785.txt">Table of n, a(n) for n = 0..10010</a>
%H A351785 Rémy Sigrist, <a href="/A351785/a351785.png">Colored representation of the table for n, k < 2^10</a> (where the hue is function of T(n, k))
%H A351785 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dyadic_rational">Dyadic rational</a>
%H A351785 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A351785 T(A000695(n), A000695(k)) = A000695(n + k).
%F A351785 T(n, k) = T(k, n).
%F A351785 T(m, T(n, k)) = T(T(m, n), k).
%F A351785 T(n, 0) = n.
%e A351785 Array T(n, k) begins:
%e A351785   n\k|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A351785   ----  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --  --
%e A351785     0|   0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15
%e A351785     1|   1   4   3   6   5  16   7  18   9  12  11  14  13  24  15  26
%e A351785     2|   2   3   1   4   6   7   5  16  10  11   9  12  14  15  13  24
%e A351785     3|   3   6   4   5   7  18  16  17  11  14  12  13  15  26  24  25
%e A351785     4|   4   5   6   7  16  17  18  19  12  13  14  15  24  25  26  27
%e A351785     5|   5  16   7  18  17  20  19  22  13  24  15  26  25  28  27  30
%e A351785     6|   6   7   5  16  18  19  17  20  14  15  13  24  26  27  25  28
%e A351785     7|   7  18  16  17  19  22  20  21  15  26  24  25  27  30  28  29
%e A351785     8|   8   9  10  11  12  13  14  15   2   3   1   4   6   7   5  16
%e A351785     9|   9  12  11  14  13  24  15  26   3   6   4   5   7  18  16  17
%e A351785    10|  10  11   9  12  14  15  13  24   1   4   3   6   5  16   7  18
%o A351785 (PARI) d(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^((-1)^k*(k+1)\2)); v }
%o A351785 t(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^if (k>=0, 2*k, -1-2*k)); v }
%o A351785 T(n,k) = t(d(n)+d(k))
%Y A351785 Cf. A000695, A130472, A351705, A351706, A351786 (multiplication).
%K A351785 nonn,base,tabl
%O A351785 0,4
%A A351785 _Rémy Sigrist_, Feb 19 2022