cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351786 Symmetric array T(n, k), n, k >= 0, read by antidiagonals; for any m >= 0 with binary expansion Sum_{i >= 0} b_i*2^i, let d(m) = Sum_{i >= 0} b_i * 2^A130472(i); let t be the inverse of d; T(n, k) = t(d(n) * d(k)).

This page as a plain text file.
%I A351786 #11 Feb 23 2022 10:51:28
%S A351786 0,0,0,0,1,0,0,2,2,0,0,3,8,3,0,0,4,10,10,4,0,0,5,1,12,1,5,0,0,6,3,5,5,
%T A351786 3,6,0,0,7,9,18,16,18,9,7,0,0,8,11,15,20,20,15,11,8,0,0,9,32,25,17,65,
%U A351786 17,25,32,9,0,0,10,34,40,21,23,23,21,40,34,10,0
%N A351786 Symmetric array T(n, k), n, k >= 0, read by antidiagonals; for any m >= 0 with binary expansion Sum_{i >= 0} b_i*2^i, let d(m) = Sum_{i >= 0} b_i * 2^A130472(i); let t be the inverse of d; T(n, k) = t(d(n) * d(k)).
%C A351786 The function d is a bijection from the nonnegative integers to the nonnegative dyadic rationals satisfying d(A000695(n)) = n for any n >= 0.
%H A351786 Rémy Sigrist, <a href="/A351786/b351786.txt">Table of n, a(n) for n = 0..10010</a>
%H A351786 Rémy Sigrist, <a href="/A351786/a351786.png">Colored representation of the table for n, k < 2^10</a> (where the hue is function of T(n, k))
%H A351786 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dyadic_rational">Dyadic rational</a>
%H A351786 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A351786 T(A000695(n), A000695(k)) = A000695(n * k).
%F A351786 T(n, k) = T(k, n).
%F A351786 T(m, T(n, k)) = T(T(m, n), k).
%F A351786 T(n, 0) = 0.
%F A351786 T(n, 1) = n.
%e A351786 Array T(n, k) begins:
%e A351786   n\k|  0   1   2   3   4   5    6    7    8    9   10   11   12   13   14   15
%e A351786   ---+-------------------------------------------------------------------------
%e A351786     0|  0   0   0   0   0   0    0    0    0    0    0    0    0    0    0    0
%e A351786     1|  0   1   2   3   4   5    6    7    8    9   10   11   12   13   14   15
%e A351786     2|  0   2   8  10   1   3    9   11   32   34   40   42   33   35   41   43
%e A351786     3|  0   3  10  12   5  18   15   25   40   43   33   38   45   58   48   51
%e A351786     4|  0   4   1   5  16  20   17   21    2    6    3    7   18   22   19   23
%e A351786     5|  0   5   3  18  20  65   23   70   10   15   12   25   30   75   72   77
%e A351786     6|  0   6   9  15  17  23   28   74   34   37   43   56   51   96   62  105
%e A351786     7|  0   7  11  25  21  70   74   88   42   56   38   52   63  109   99  113
%e A351786     8|  0   8  32  40   2  10   34   42  128  136  160  168  130  138  162  170
%e A351786     9|  0   9  34  43   6  15   37   56  136  131  170  164  142  144  173  178
%e A351786    10|  0  10  40  33   3  12   43   38  160  170  130  137  163  172  132  142
%o A351786 (PARI) d(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^((-1)^k*(k+1)\2)); v }
%o A351786 t(n) = { my (v=0, k); while (n, n-=2^k=valuation(n, 2); v+=2^if (k>=0, 2*k, -1-2*k)); v }
%o A351786 T(n,k) = t(d(n)*d(k))
%Y A351786 Cf. A000695, A130472, A351705, A351706, A351785 (addition).
%K A351786 nonn,base,tabl
%O A351786 0,8
%A A351786 _Rémy Sigrist_, Feb 19 2022