A351789 Decimal expansion of Sum_{k>=1} AH(k)*F(k)/2^k, where AH(k) = A058313(k)/A058312(k) is the k-th alternating harmonic number and F(k) = A000045(k) is the k-th Fibonacci number.
1, 5, 1, 4, 3, 7, 0, 3, 7, 4, 2, 0, 6, 2, 2, 1, 8, 7, 2, 4, 3, 4, 5, 9, 4, 7, 8, 9, 1, 6, 1, 6, 5, 0, 7, 7, 9, 6, 4, 8, 3, 1, 3, 1, 3, 3, 1, 6, 8, 8, 7, 6, 1, 7, 7, 9, 4, 2, 3, 0, 6, 1, 8, 4, 4, 6, 5, 0, 7, 5, 3, 9, 0, 1, 5, 1, 6, 6, 4, 2, 1, 7, 5, 0, 2, 8, 7, 8, 0, 1, 8, 1, 9, 2, 0, 0, 2, 1, 0, 1, 9, 3, 4, 9, 5
Offset: 1
Examples
1.51437037420622187243459478916165077964831313316887...
Links
- Seán M. Stewart, Problem H-893, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 60, No. 1 (2022), p. 91.
Programs
-
Mathematica
RealDigits[Log[5/4] + 6*Log[GoldenRatio]/Sqrt[5], 10, 100][[1]]
Formula
Equals log(5/4) + 6*log(phi)/sqrt(5), where phi is the golden ratio (A001622) (Stewart, 2022).