This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351792 #15 Feb 20 2022 06:43:25 %S A351792 1,1,-4,-3,132,-375,-8298,86121,636696,-20318607,15154290,5555366289, %T A351792 -57903946092,-1608939709767,44662076643870,329040381072825, %U A351792 -31446740971136592,195779189199531105,21694625692807192938,-496937940680594097279 %N A351792 Expansion of e.g.f. 1/(1 - x*exp(-3*x)). %F A351792 a(n) = n! * Sum_{k=0..n} (-3 * (n-k))^k/k!. %F A351792 a(0) = 1 and a(n) = n * Sum_{k=0..n-1} (-3)^(n-1-k) * binomial(n-1,k) * a(k) for n > 0. %t A351792 a[0] = 1; a[n_] := n!*Sum[(-3*(n - k))^k/k!, {k, 0, n}]; Array[a, 20, 0] (* _Amiram Eldar_, Feb 19 2022 *) %o A351792 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(1-x*exp(-3*x)))) %o A351792 (PARI) a(n) = n!*sum(k=0, n, (-3*(n-k))^k/k!); %o A351792 (PARI) a(n) = if(n==0, 1, n*sum(k=0, n-1, (-3)^(n-1-k)*binomial(n-1, k)*a(k))); %Y A351792 Column k=3 of A351791. %Y A351792 Cf. A336951, A351778. %K A351792 sign %O A351792 0,3 %A A351792 _Seiichi Manyama_, Feb 19 2022