cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351806 Denominator of zeta({6}_n)/Pi^(6*n).

This page as a plain text file.
%I A351806 #36 Jun 01 2022 14:44:45
%S A351806 1,945,212837625,64965492466875,432684797065192546875,
%T A351806 1347828286825972065254765625,197885500589205605585596463448046875,
%U A351806 18132629348577543860598956218936672646484375,3673787208165374996876652878250276546299488037109375
%N A351806 Denominator of zeta({6}_n)/Pi^(6*n).
%C A351806 ({6}_n) is standard notation for multiple zeta values. It represents (6, ..., 6) where the multiplicity of 6 is n.
%H A351806 J. M. Borwein, D. M. Bradley, and D. J. Broadhurst, <a href="https://arxiv.org/abs/hep-th/9611004">Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k</a>, arXiv:hep-th/9611004, 1996.
%H A351806 Roudy El Haddad, <a href="https://arxiv.org/abs/2102.00821">Multiple Sums and Partition Identities</a>, arXiv:2102.00821 [math.CO], 2021.
%H A351806 Roudy El Haddad, <a href="https://doi.org/10.7546/nntdm.2022.28.2.200-233">A generalization of multiple zeta value. Part 2: Multiple sums</a>. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
%F A351806 a(n) = denominator(6*2^(6*n)/(6*n + 3)!).
%t A351806 a[n_] := Denominator[6*2^(6*n)/(6*n + 3)!]; Array[a, 9, 0] (* _Amiram Eldar_, Feb 19 2022 *)
%o A351806 (PARI) a(n) = denominator(6*2^(6*n)/(6*n + 3)!); \\ _Michel Marcus_, Feb 22 2022
%Y A351806 Cf. A351864 (numerators).
%Y A351806 Cf. A002432 (denominators of zeta(2*n)/Pi^(2*n)).
%Y A351806 Cf. A013664 (zeta(6)).
%Y A351806 Cf. A103345.
%K A351806 nonn,frac
%O A351806 0,2
%A A351806 _Roudy El Haddad_, Feb 19 2022