cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351814 G.f. A(x) satisfies A(x) = 1 + x * A(x/(1 - x)^4) / (1 - x).

This page as a plain text file.
%I A351814 #11 Aug 07 2023 08:31:31
%S A351814 1,1,2,8,42,272,2115,19010,192760,2172468,26896081,362184998,
%T A351814 5262526484,81969555736,1361249430071,23989460080079,446832403813788,
%U A351814 8765575657218860,180544405959236487,3893718987163468969,87711985393624557487,2059264143275898894916
%N A351814 G.f. A(x) satisfies A(x) = 1 + x * A(x/(1 - x)^4) / (1 - x).
%H A351814 Seiichi Manyama, <a href="/A351814/b351814.txt">Table of n, a(n) for n = 0..467</a>
%F A351814 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+3*k-1,n-k-1) * a(k).
%t A351814 nmax = 21; A[_] = 0; Do[A[x_] = 1 + x A[x/(1 - x)^4]/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%t A351814 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 3 k - 1, n - k - 1] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
%Y A351814 Cf. A000110, A125273, A351813, A351815.
%K A351814 nonn
%O A351814 0,3
%A A351814 _Ilya Gutkovskiy_, Feb 20 2022