cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351817 G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x)^4) / (1 - x)^4.

This page as a plain text file.
%I A351817 #10 May 31 2022 02:39:38
%S A351817 1,1,5,23,139,1052,9166,90073,989205,11981051,158149438,2255926638,
%T A351817 34549223880,564898101239,9812669832553,180324597042263,
%U A351817 3492960489714519,71092066388237562,1516044005669227542,33788707128788508476,785270646437483414261,18992014442689191510460
%N A351817 G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x)^4) / (1 - x)^4.
%H A351817 Seiichi Manyama, <a href="/A351817/b351817.txt">Table of n, a(n) for n = 0..466</a>
%F A351817 a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+3*k+2,n-k-1) * a(k).
%t A351817 nmax = 21; A[_] = 0; Do[A[x_] = 1 + x A[x/(1 - x)^4]/(1 - x)^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%t A351817 a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 3 k + 2, n - k - 1] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]
%Y A351817 Cf. A000110, A045499, A125274, A351814, A351816, A351818.
%K A351817 nonn
%O A351817 0,3
%A A351817 _Ilya Gutkovskiy_, Feb 20 2022