cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351819 Irregular triangle read by rows: T(n,k) is the number of subparts of the symmetric representation of sigma(n) that arise from the (2*k-1)-th double-staircase of the double-staircases diagram of n described in A335616, n >= 1, k >= 1, and the first element of column k is in row A000384(k).

This page as a plain text file.
%I A351819 #58 Aug 04 2022 05:16:22
%S A351819 1,1,2,1,2,1,1,2,0,1,0,2,1,2,0,2,0,1,1,2,0,2,0,2,1,1,1,0,0,2,0,0,1,2,
%T A351819 0,2,0,0,1,0,1,2,2,0,2,0,0,2,0,0,1,1,0,2,0,1,2,0,0,2,2,0,1,0,0,1,2,0,
%U A351819 0,0,1,2,1,0,2,0,0,0,1,0,0,0,2,2,0,0,2,0,0,0,2,0,1,1,1,2,0,0,2,0,0,0
%N A351819 Irregular triangle read by rows: T(n,k) is the number of subparts of the symmetric representation of sigma(n) that arise from the (2*k-1)-th double-staircase of the double-staircases diagram of n described in A335616, n >= 1, k >= 1, and the first element of column k is in row A000384(k).
%C A351819 Conjecture 1: the number of nonzero terms in row n equals A082647(n).
%C A351819 Conjecture 2: column k lists positive integers interleaved with 2*k+2 zeros.
%C A351819 T(n,k) is also the number of staircases (or subparts) of the ziggurat diagram of n (described in A347186) that arise from the (2*k-1)-th double-staircase of the double-staircases diagram of n (described in A335616).
%C A351819 The k-th column of the triangle is related to the (2*k+1)-gonal numbers. For further information about this connection see A347186 and A347263.
%C A351819 Terms can be 0, 1 or 2.
%e A351819 Triangle begins:
%e A351819 -----------------------
%e A351819    n / k   1  2  3  4
%e A351819 -----------------------
%e A351819    1 |     1;
%e A351819    2 |     1;
%e A351819    3 |     2;
%e A351819    4 |     1;
%e A351819    5 |     2;
%e A351819    6 |     1, 1;
%e A351819    7 |     2, 0;
%e A351819    8 |     1, 0;
%e A351819    9 |     2, 1;
%e A351819   10 |     2, 0;
%e A351819   11 |     2, 0;
%e A351819   12 |     1, 1;
%e A351819   13 |     2, 0;
%e A351819   14 |     2, 0;
%e A351819   15 |     2, 1, 1;
%e A351819   16 |     1, 0, 0;
%e A351819   17 |     2, 0, 0;
%e A351819   18 |     1, 2, 0;
%e A351819   19 |     2, 0, 0;
%e A351819   20 |     1, 0, 1;
%e A351819   21 |     2, 2, 0;
%e A351819   22 |     2, 0, 0;
%e A351819   23 |     2, 0, 0;
%e A351819   24 |     1, 1, 0;
%e A351819   25 |     2, 0, 1;
%e A351819   26 |     2, 0, 0;
%e A351819   27 |     2, 2, 0;
%e A351819   28 |     1, 0, 0, 1;
%e A351819   ...
%e A351819 For n = 15 the calculation of the 15th row of triangle (in accordance with the geometric algorithm described in A347186) is as follows:
%e A351819 Stage 1 (Construction):
%e A351819 We draw the diagram called "double-staircases" with 15 levels described in A335616.
%e A351819 Then we label the five double-staircases (j = 1..5) as shown below:
%e A351819                                _
%e A351819                              _| |_
%e A351819                            _|  _  |_
%e A351819                          _|   | |   |_
%e A351819                        _|    _| |_    |_
%e A351819                      _|     |  _  |     |_
%e A351819                    _|      _| | | |_      |_
%e A351819                  _|       |   | |   |       |_
%e A351819                _|        _|  _| |_  |_        |_
%e A351819              _|         |   |  _  |   |         |_
%e A351819            _|          _|   | | | |   |_          |_
%e A351819          _|           |    _| | | |_    |           |_
%e A351819        _|            _|   |   | |   |   |_            |_
%e A351819      _|             |     |  _| |_  |     |             |_
%e A351819    _|              _|    _| |  _  | |_    |_              |_
%e A351819   |_ _ _ _ _ _ _ _|_ _ _|_ _|_|_|_|_ _|_ _ _|_ _ _ _ _ _ _ _|
%e A351819   1               2     3   4 5
%e A351819 .
%e A351819 Stage 2 (Debugging):
%e A351819 We remove the fourth double-staircase as it does not have at least one step at level 1 of the diagram starting from the base, as shown below:
%e A351819                                _
%e A351819                              _| |_
%e A351819                            _|  _  |_
%e A351819                          _|   | |   |_
%e A351819                        _|    _| |_    |_
%e A351819                      _|     |  _  |     |_
%e A351819                    _|      _| | | |_      |_
%e A351819                  _|       |   | |   |       |_
%e A351819                _|        _|  _| |_  |_        |_
%e A351819              _|         |   |     |   |         |_
%e A351819            _|          _|   |     |   |_          |_
%e A351819          _|           |    _|     |_    |           |_
%e A351819        _|            _|   |         |   |_            |_
%e A351819      _|             |     |         |     |             |_
%e A351819    _|              _|    _|    _    |_    |_              |_
%e A351819   |_ _ _ _ _ _ _ _|_ _ _|_ _ _|_|_ _ _|_ _ _|_ _ _ _ _ _ _ _|
%e A351819   1               2     3     5
%e A351819 .
%e A351819 Stage 3 (Annihilation):
%e A351819 We delete the second double-staircase and the steps of the first double-staircase that are just above the second double-staircase.
%e A351819 The new diagram has two double-staircases and two simple-staircases as shown below:
%e A351819                                _
%e A351819                               | |
%e A351819                  _            | |            _
%e A351819                _| |          _| |_          | |_
%e A351819              _|   |         |     |         |   |_
%e A351819            _|     |         |     |         |     |_
%e A351819          _|       |        _|     |_        |       |_
%e A351819        _|         |       |         |       |         |_
%e A351819      _|           |       |         |       |           |_
%e A351819    _|             |      _|    _    |_      |             |_
%e A351819   |_ _ _ _ _ _ _ _|_ _ _|_ _ _|_|_ _ _|_ _ _|_ _ _ _ _ _ _ _|
%e A351819   1                     3     5
%e A351819 .
%e A351819 The diagram is called "ziggurat of 15".
%e A351819 The staircase labeled 1 arises from the double-staircase labeled 1 in the double-staircases diagram of 15. There is a pair of these staircases, so T(15,1) = 2, since the symmetric representation of sigma(15) is also the base of the three dimensional version of the ziggurat .
%e A351819 The double-staircase labeled 3 is the same in both diagrams, so T(15,2) = 1.
%e A351819 The double-staircase labeled 5 is the same in both diagrams, so T(15,3) = 1.
%e A351819 Therefore the 15th row of the triangle is [2, 1, 1].
%e A351819 The top view of the 3D-Ziggurat of 15 and the symmetric representation of sigma(15) with subparts look like this:
%e A351819                                 _                                     _
%e A351819                                |_|                                   | |
%e A351819                                |_|                                   | |
%e A351819                                |_|                                   | |
%e A351819                                |_|                                   | |
%e A351819                                |_|                                   | |
%e A351819                                |_|                                   | |
%e A351819                                |_|                                   | |
%e A351819                           _ _ _|_|                              _ _ _|_|
%e A351819                       _ _|_|      36                        _ _| |      8
%e A351819                      |_|_|_|                               |  _ _|
%e A351819                     _|_|_|                                _| |_|
%e A351819                    |_|_|  1                              |_ _|  1
%e A351819                    |    34                               |    7
%e A351819     _ _ _ _ _ _ _ _|                      _ _ _ _ _ _ _ _|
%e A351819    |_|_|_|_|_|_|_|_|                     |_ _ _ _ _ _ _ _|
%e A351819                     36                                    8
%e A351819 .
%e A351819      Top view of the 3D-Ziggurat.        The symmetric representation of
%e A351819      The ziggurat is formed by 3        of sigma(15) is formed by 3 parts.
%e A351819    polycubes with 107 cubes             It has 4 subparts with 24 cells in
%e A351819    in total. It has 4 staircases       total. It is the base of the ziggurat.
%e A351819        with 24 steps in total.
%e A351819 .
%Y A351819 Another (and more regular) version of A279387 and of A280940.
%Y A351819 Row sums give A001227.
%Y A351819 Row n has length A351846(n).
%Y A351819 Cf. A000384, A082647, A196020, A235791, A236104, A237048, A237591, A237593, A262626, A335616, A346875, A347186, A347263, A347529.
%K A351819 nonn,tabf
%O A351819 1,3
%A A351819 _Omar E. Pol_, Feb 20 2022