cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351823 Triangular array read by rows. T(n,k) is the number of sets of lists (as in A000262(n)) with exactly k size 2 lists, n >= 0, 0 <= k <= floor(n/2).

This page as a plain text file.
%I A351823 #26 Jan 20 2023 01:31:32
%S A351823 1,1,1,2,7,6,49,12,12,301,140,60,2281,1470,180,120,21211,12642,2940,
%T A351823 840,220417,127736,41160,3360,1680,2528569,1527192,455112,70560,15120,
%U A351823 32014801,19837530,5748120,1234800,75600,30240,442974511,278142590,83995560,16687440,1940400,332640
%N A351823 Triangular array read by rows. T(n,k) is the number of sets of lists (as in A000262(n)) with exactly k size 2 lists, n >= 0, 0 <= k <= floor(n/2).
%C A351823 From the asymptotic estimate of A000262(n) provided by _Vaclav Kotesovec_ we deduce that in the limit as n gets big the average number of size 2 lists is equal to 1. In other words, lim_{n->oo} Sum_{k>=1} T(n,k)*k/A000262(n) = 1. Generally for any j >= 1, the average number of size j lists equals 1 in the limit as n -> oo.
%F A351823 E.g.f.: exp(x/(1-x) - x^2 + y*x^2).
%F A351823 Sum_{k=0..floor(n/2)} k * T(n,k) = A351825(n). - _Alois P. Heinz_, Feb 24 2022
%e A351823 Triangle T(n,k) begins:
%e A351823       1;
%e A351823       1;
%e A351823       1,     2;
%e A351823       7,     6;
%e A351823      49,    12,   12;
%e A351823     301,   140,   60;
%e A351823    2281,  1470,  180, 120;
%e A351823   21211, 12642, 2940, 840;
%e A351823   ...
%p A351823 b:= proc(n) option remember; expand(`if`(n=0, 1, add(j!*
%p A351823      `if`(j=2, x, 1)*b(n-j)*binomial(n-1, j-1), j=1..n)))
%p A351823     end:
%p A351823 T:= n-> (p-> seq(coeff(p, x, i), i=0..n/2))(b(n)):
%p A351823 seq(T(n), n=0..12);  # _Alois P. Heinz_, Feb 20 2022
%t A351823 nn = 7; Map[Select[#, # > 0 &] &,Range[0, nn]! CoefficientList[Series[Exp[ x/(1 - x) - x ^2 + y x^2], {x, 0, nn}], {x, y}]] // Grid
%Y A351823 Column k=1 gives A113235.
%Y A351823 T(n,floor(n/2)) gives A081125.
%Y A351823 T(2n,n) gives A001813.
%Y A351823 Cf. A000262 (row sums) A006152, A114329, A351825.
%K A351823 nonn,tabf
%O A351823 0,4
%A A351823 _Geoffrey Critzer_, Feb 20 2022