A351830 Distance from the n-th square pyramidal number (sum of the first n positive squares) to the nearest square.
0, 0, 1, 2, 5, 6, 9, 4, 8, 4, 15, 22, 25, 22, 9, 15, 25, 21, 7, 30, 46, 53, 49, 32, 0, 49, 40, 41, 30, 91, 46, 12, 9, 15, 4, 26, 77, 114, 25, 91, 61, 105, 15, 122, 129, 66, 22, 1, 1, 24, 76, 157, 170, 37, 131, 141, 91, 139, 165, 15, 174, 247, 150, 80, 39, 29
Offset: 0
Examples
a(4) = 5 because the sum of the first 4 positive squares is 1 + 4 + 9 + 16 = 30, the nearest square is 25 and 30 - 25 = 5. - _Paolo Xausa_, Jul 05 2022
References
- W. Ljunggren, New solution of a problem proposed by E. Lucas, Norsk Mat. Tidsskr. 34 (1952), pp 65-72.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, entry 24, p 101.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..9999
- Michael A. Bennett, Lucas' Square Pyramid Problem Revisited.
- Richard E. Borcherds, How to construct the Leech lattice, YouTube video, 2022.
- J. H. Conway and N. J. A. Sloane, Lorentzian forms for the Leech lattice, Bulletin (New Series) of the American Mathematical Society, Volume 6, Number 2, March 1982.
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd edition, Springer, New York, NY, 1999, pp. 524-528.
- Anji Dong, Katerina Saettone, Kendra Song, and Alexandru Zaharescu, An Equidistribution Result for Differences Associated to Square Pyramidal Numbers II, arXiv:2505.04166 [math.NT], 2025.
- E. Lucas, Problem 1180, Nouvelles Ann. Math. (2) 14 (1875), p 336.
- G. N. Watson, The problem of the square pyramid, Messenger of Mathematics 48 (1918), pp. 1-22.
- Wikipedia, Leech lattice.
Programs
-
Mathematica
nterms=66;Array[Abs[(s=#(#+1)(2#+1)/6)-Round[Sqrt[s]]^2]&,nterms,0]
-
Python
from math import isqrt def a(n): t = n*(n+1)*(2*n+1)//6 r = isqrt(t) return min(t - r**2, (r+1)**2 - t) print([a(n) for n in range(66)]) # Michael S. Branicky, Feb 21 2022
Formula
From Paolo Xausa, Jul 05 2022: (Start)
Extensions
Name edited by Peter Munn, Aug 04 2023
Comments