This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351838 #20 Jul 31 2023 17:35:26 %S A351838 0,1,4,4,8,8,12,16,16,8,12,20,24,28,40,48,32,8,12,20,24,28,40,52,40, %T A351838 28,44,64,76,96,128,128,64,8,12,20,24,28,40,52,40,28,44,64,76,96,128, %U A351838 132,72,28,44,64,76,96,132,144,108,100,152,204,248,320,384,320 %N A351838 First differences of A351837. %C A351838 Equivalently, a(n) gives the number of toothpicks added at stage n of the construction described in A351837. %C A351838 For symmetry reasons, all terms except a(1) = 1 are multiples of 4. %H A351838 Rémy Sigrist, <a href="/A351838/b351838.txt">Table of n, a(n) for n = 0..8194</a> %H A351838 Rémy Sigrist, <a href="/A351837/a351837.png">Illustration of the structure at stage 16</a> %H A351838 Rémy Sigrist, <a href="/A351838/a351838.gp.txt">PARI program</a> %H A351838 <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a> %H A351838 <a href="/index/To#toothpick">Index entries for sequences related to toothpick sequences</a> %F A351838 Empirically: %F A351838 - a(2^k - 1) = A058922(k-1) for any k >= 2, %F A351838 - a(2^k) = 2^(k+1) for any k >= 1, %F A351838 - a(2^k + 1) = 8 for any k >= 2, %F A351838 - a(2^k + 2) = 12 for any k >= 2. %e A351838 The configuration at stage 4 can be depicted as follows (stars representing ends and toothpicks being labeled with their stage of appearance): %e A351838 . %e A351838 * * %e A351838 | | %e A351838 4 4 %e A351838 | | %e A351838 *---3---* *---3---* %e A351838 | | | | %e A351838 4 2 2 4 %e A351838 | | | | %e A351838 * *---1---* * %e A351838 | | | | %e A351838 4 2 2 4 %e A351838 | | | | %e A351838 *---3---* *---3---* %e A351838 | | %e A351838 4 4 %e A351838 | | %e A351838 * * %e A351838 . %e A351838 - so a(1) = 1, a(2) = a(3) = 4, a(4) = 8. %o A351838 (PARI) See Links section. %Y A351838 Cf. A058922, A139251, A351837. %K A351838 nonn %O A351838 0,3 %A A351838 _Rémy Sigrist_, Feb 21 2022