cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351842 Numbers whose sum of digits and number of proper divisors are equal.

This page as a plain text file.
%I A351842 #30 Feb 26 2022 09:23:21
%S A351842 21,32,50,70,111,162,168,201,212,232,250,308,322,380,384,405,416,430,
%T A351842 456,546,610,650,690,740,744,812,832,870,980,1004,1011,1015,1053,1101,
%U A351842 1105,1222,1316,1352,1365,1460,1464,1482,1510,1518,1550,1554,1590,1608,1752
%N A351842 Numbers whose sum of digits and number of proper divisors are equal.
%e A351842 21 is a term since its digits sum to 2 + 1 = 3 and it has three proper divisors (1, 3, and 7).
%p A351842 S := n -> add(convert(n, base, 10)):
%p A351842 PD := n -> nops(NumberTheory[Divisors](n)) - 1:
%p A351842 a := n -> select(x -> S(x) = PD(x), [seq(1..n)])
%t A351842 Select[Range[1, 1700], Total[IntegerDigits[#]] == Length[Divisors[#]] - 1 &]
%o A351842 (Python)
%o A351842 from sympy import divisor_count
%o A351842 def ok(n): return sum(map(int, str(n))) == divisor_count(n) - 1
%o A351842 print([k for k in range(1753) if ok(k)]) # _Michael S. Branicky_, Feb 21 2022
%o A351842 (PARI) isok(m) = sumdigits(m) == numdiv(m) - 1; \\ _Michel Marcus_, Feb 21 2022
%o A351842 (PARI) list(nn) = forcomposite(n=1, nn, if (sumdigits(n) == (numdiv(n) - 1), print1(n, ", ")));
%o A351842 list(1700);
%Y A351842 Cf. A007953, A032741, A057531.
%K A351842 nonn,base
%O A351842 1,1
%A A351842 _Zdenek Cervenka_, Feb 21 2022