This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351849 #31 Apr 10 2022 15:33:28 %S A351849 1,11,23,1,111,123,323,3111,11111,11123,12323,32323,323111,3111111, %T A351849 11111111,11111123,11112323,11232323,23232323,2323231,232311,23111, %U A351849 1111,1123,2323,231,11,23,1,1111,1123,2323,231,11,23,1 %N A351849 Irregular triangle read by rows, in which row n lists the computation of the tag system T_C(3,2) with alphabet {1, 2, 3}, deletion number 2, and production rules 1 -> 23, 2 -> 1, 3 -> 111, when started from the word encoding n. %C A351849 This tag system has no halting symbol: the halting condition is reached when the word 1 is produced. %C A351849 As proved by De Mol (2008), this tag system encodes the Collatz 3x+1 function T(x), where T(x)=x/2 if x is even, (3x+1)/2 if x is odd. %C A351849 For each row n >= 1, if the tag system is started from the configuration encoding n (a word composed by n ones), and provided the Collatz conjecture is true, the iterations of the system will always reach the word 1 (after A351850(n) steps). %C A351849 In her original work De Mol uses the alphabet {alpha, c, y}, which is replaced here by {1, 2, 3}. %H A351849 Paolo Xausa, <a href="/A351849/b351849.txt">Table of n, a(n) for n = 1..2660 (rows n = 1..26 of triangle, flattened)</a> %H A351849 J. C. Lagarias, <a href="https://arxiv.org/abs/2111.02635">The 3x+1 Problem: An Overview</a>, arXiv:2111.02635 [math.NT], 2021, p. 17. %H A351849 J. C. Lagarias, ed., <a href="http://www.ams.org/bookstore-getitem/item=mbk-78">The Ultimate Challenge: The 3x+1 Problem</a>, American Mathematical Society, 2010, p. 19. %H A351849 Liesbeth De Mol, <a href="https://doi.org/10.1016/j.tcs.2007.10.020">Tag systems and Collatz-like functions</a>, Theoretical Computer Science, Volume 390, Issue 1, 2008, pp. 92-101. %H A351849 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tag_system">Tag system</a>. %H A351849 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>. %e A351849 Written as an irregular triangle, the sequence begins: %e A351849 1; %e A351849 11, 23, 1; %e A351849 111, 123, 323, 3111, 11111, 11123, ..., 2323, 231, 11, 23, 1; %e A351849 1111, 1123, 2323, 231, 11, 23, 1; %e A351849 11111, 11123, 12323, 32323, 323111, 3111111, ..., 1; %e A351849 ... %e A351849 Each row includes (in the same order of appearance) the words encoding the terms in the corresponding row of A070168. E.g., row 4 includes the words 1111, 11, 1, which encode the numbers 4, 2, 1, respectively. %e A351849 The following computation shows how row 3 is generated. In each step, symbols coming from the production rules (based on the first symbol of the previous word) are appended; the first two symbols of the word are then deleted. %e A351849 111 (corresponding to the integer 3) %e A351849 123 (appending 23, from production rule 1 -> 23) %e A351849 323 (appending 23, from production rule 1 -> 23) %e A351849 3111 (appending 111, from production rule 3 -> 111) %e A351849 11111 (appending 111, from production rule 3 -> 111) %e A351849 ... %e A351849 23 (appending 23, from production rule 1 -> 23) %e A351849 1 (appending 1, from production rule 2 -> 1) %t A351849 t[s_]:=StringDrop[s,2]<>StringReplace[StringTake[s,1],{"1"->"23","2"->"1","3"->"111"}]; %t A351849 nrows=5;Table[NestWhileList[t,StringRepeat["1",n],#!="1"&],{n,nrows}] %o A351849 (Python) %o A351849 def A351849_row(n): %o A351849 s = "1" * n %o A351849 row = [int(s)] %o A351849 while s != "1": %o A351849 if s[0] == "1": s += "23" %o A351849 elif s[0] == "2": s += "1" %o A351849 else: s += "111" %o A351849 s = s[2:] %o A351849 row.append(int(s)) %o A351849 return row %o A351849 nrows = 4 %o A351849 print([A351849_row(n) for n in range(1, nrows + 1)]) %Y A351849 Cf. A014682, A070168, A351850. %K A351849 nonn,tabf %O A351849 1,2 %A A351849 _Paolo Xausa_, Feb 22 2022