cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351855 Partial sums of nonsquares that are partial sums of nonprimes.

Original entry on oeis.org

5, 64, 506, 64325, 268723, 480129, 6282620, 64548862, 9657523883, 13480852825, 29766135708, 105223301080, 519861666225, 851245744041, 1378216791896, 581522966976875, 583298551668358, 885441628670251, 1651966084813205, 16868988672306046, 17170433482837259
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Mar 31 2022

Keywords

Examples

			a(2) = 64 is a term because 64 = 1+4+6+8+9+10+12+14 = 2+3+5+6+7+8+10+11+12 is the sum of the first 8 nonprimes and the sum of the first 9 nonsquares.
		

Crossrefs

Intersection of A051349 and A086849.

Programs

  • Maple
    i:= 0: j:= 0: s:= 0: t:= 0:
    R:= NULL: count:= 0:
    while count < 13 do
      if s <= t then
         i:= i+1;
         if not issqr(i) then
           s:= s+i;
           if s=t then R:= R,s; count:= count+1 fi;
         fi
      else
         j:= j+1;
         if not isprime(j) then
           t:= t+j;
           if s=t then R:= R,t; count:= count+1 fi;
         fi
      fi
    od:
    R;
  • Python
    from itertools import islice
    from sympy import nextprime
    def A351855_gen(): # generator of terms
        c, k, ks, m, p, q = 0, 1, 2, 1, 4, 5
        while True:
            for n in range(ks,ks+2*k):
                c += n
                if c == m:
                    yield c
                else:
                    while c > m:
                        m += p
                        p += 1
                        if p == q:
                            q = nextprime(q)
                            p += 1
            ks += 2*k+1
            k += 1
    A351855_list = list(islice(A351855_gen(),20)) # Chai Wah Wu, Apr 04 2022

Extensions

a(20)-a(21) from Jon E. Schoenfield, Mar 31 2022