This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351859 #24 May 30 2025 10:34:27 %S A351859 1,1,3,19,67,251,1137,4803,20035,87013,377753,1634469,7134385, %T A351859 31261114,137121113,603206144,2660097603,11749336328,51981371895, %U A351859 230336544210,1021976441817,4539784391763,20188837618799,89871081815631,400427435522737,1785639575031501 %N A351859 a(n) = [x^n] (1 + x + x^2 + x^3)^(4*n)/(1 + x + x^2)^(3*n). %C A351859 This sequence is the third in an infinite family of sequences defined as follows. Let k be a positive integer. Define the rational function G_k(x) = (1 + x + ... + x^k)^(k+1)/(1 + x + ... + x^(k-1))^k, so that G_1(x) = (1 + x)^2, and define the sequence u_k by u_k(n) = [x^n] G_k(x)^n. See A000984, the sequence of central binomial coefficients, for the case k = 1 and A351858 for the case k = 2. The present sequence is the case k = 3. %C A351859 Given a power series G(x) with integer coefficients it is known that the sequence (g(n))n>=1 defined by g(n) := [x^n] G(x)^n satisfies the Gauss congruences g(n*p^r) == g(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r. %C A351859 Thus a(n) satisfies the Gauss congruences. Calculation suggests that, in fact, the stronger supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for primes p >= 5 and positive integers n and r. These supercongruences are known to hold for the central binomial coefficients A000984(n) = [x^n] ((1 + x)^2)^n (Meštrović, equation 39). %C A351859 More generally, if r is a positive integer and s an integer then the sequence defined by a(r,s;n) = [x^(r*n)] G_3(x)^(s*n) may satisfy the same supercongruences. %D A351859 R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197. %H A351859 Paolo Xausa, <a href="/A351859/b351859.txt">Table of n, a(n) for n = 0..425</a> %H A351859 R. Meštrović, <a href="https://arxiv.org/abs/1111.3057">Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862--2012)</a>, arXiv:1111.3057 [math.NT], 2011. %F A351859 a(n) = Sum_{i = 0..n} Sum_{j = 0..n} Sum_{k = 0..j} (-1)^j* C(4n,n-2*i-j-k) *C(4n,i)*C(3n+j-1,j)*C(j,k). %F A351859 The o.g.f. A(x) = 1 + x + 3*x^2 + 19*x^3 + 67*x^4 + ... is the diagonal of the bivariate rational function 1/(1 - t*(1 + x + x^2 + x^3)^4/(1 + x + x^2)^3) and hence is an algebraic function over the field of rational functions Q(x) by Stanley, Theorem 6.33, p. 197. %F A351859 Let F(x) = (1/x)*Series_Reversion( x*(1 + x + x^2)^3/(1 + x + x^2 + x^3)^4 ) = 1 + x + 2*x^2 + 8*x^3 + 25*x^4 + 81*x^5 + 305*x^6 + .... Then A(x) = 1 + x*F'(x)/F(x). %e A351859 Examples of supercongruences: %e A351859 a(5) - a(1) = 251 - 1 = 2*(5^3) == 0 (mod 5^3) %e A351859 a(2*7) - a(2) = 137121113 - 3 = 2*5*(7^4)*5711 == 0 (mod 7^4) %e A351859 a(5^2) - a(5) = 1785639575031501 - 251 = 2*(5^6)*1373*3989*10433 == 0 (mod 5^6) %p A351859 seq(add(add(add((-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)* binomial(3*n+j-1,j)*binomial(j,k), k = 0..j), j = 0..n), i = 0..n), n = 0..25); %t A351859 A351859[n_] := Sum[(-1)^j*Binomial[4*n, n-2*i-j-k]*Binomial[4*n, i]*Binomial[3*n+j-1, j]*Binomial[j, k], {i, 0, n}, {j, 0, n}, {k, 0, j}]; %t A351859 Array[A351859, 25, 0] (* _Paolo Xausa_, May 30 2025 *) %o A351859 (PARI) %o A351859 a(n)=sum(i=0,n,sum(j=0,n,sum(k=0,j,(-1)^j*binomial(4*n,n-2*i-j-k)*binomial(4*n,i)*binomial(3*n+j-1,j)*binomial(j,k)))); %o A351859 vector(25,n,a(n-1)) \\ _Paolo Xausa_, May 04 2022 %Y A351859 Cf. A000984, A103885, A333090, A333564, A333565, A333579, A333715, A351856, A351857, A351858. %K A351859 nonn,easy %O A351859 0,3 %A A351859 _Peter Bala_, Mar 01 2022