cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351880 Expansion of e.g.f. 1 / (1 - x)^cos(x).

This page as a plain text file.
%I A351880 #9 Feb 23 2022 10:16:23
%S A351880 1,1,2,3,6,15,105,924,8204,73461,700005,7323976,84472146,1064285027,
%T A351880 14492861747,211738655608,3302847261448,54800458320345,
%U A351880 963864555797385,17914985159719376,350861004976886190,7221748369472388727,155853930324297011719,3519121773604369318856
%N A351880 Expansion of e.g.f. 1 / (1 - x)^cos(x).
%F A351880 a(0) = 1; a(n) = -Sum_{k=1..n} (-1)^k * binomial(n-1,k-1) * A009410(k) * a(n-k).
%F A351880 a(n) ~ n! * n^(cos(1)-1) / Gamma(cos(1)). - _Vaclav Kotesovec_, Feb 23 2022
%t A351880 nmax = 23; CoefficientList[Series[1/(1 - x)^Cos[x], {x, 0, nmax}], x] Range[0, nmax]!
%o A351880 (PARI) my(x='x+O('x^30)); Vec(serlaplace(1/(1-x)^cos(x))) \\ _Michel Marcus_, Feb 23 2022
%Y A351880 Cf. A007118, A007119, A009192, A009410, A298374, A351881.
%K A351880 nonn
%O A351880 0,3
%A A351880 _Ilya Gutkovskiy_, Feb 23 2022