This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351886 #16 Mar 01 2022 14:51:24 %S A351886 0,1,2,1,4,2,3,1,8,4,6,3,8,3,4,1,16,9,11,6,14,5,8,4,17,9,10,5,10,3,5, %T A351886 1,32,16,21,10,24,12,15,7,26,11,17,7,16,6,11,4,39,19,20,10,24,10,11,4, %U A351886 26,12,15,7,12,3,6,1,64,34,34,20,41,21,21,10,45,21 %N A351886 a(n) is the number of k < n such that a(k) AND n = 0 (where AND denotes the bitwise AND operator). %C A351886 The definition is recursive: a(n) depends on prior terms (a(0), ..., a(n-1)); a(0) = 0 corresponds to an empty sum. %H A351886 Rémy Sigrist, <a href="/A351886/b351886.txt">Table of n, a(n) for n = 0..10000</a> %F A351886 a(2^k) = 2^k. %e A351886 The first terms, alongside the corresponding k's, are: %e A351886 n a(n) k's %e A351886 -- ---- ------------------------- %e A351886 0 0 {} %e A351886 1 1 {0} %e A351886 2 2 {0, 1} %e A351886 3 1 {0} %e A351886 4 4 {0, 1, 2, 3} %e A351886 5 2 {0, 2} %e A351886 6 3 {0, 1, 3} %e A351886 7 1 {0} %e A351886 8 8 {0, 1, 2, 3, 4, 5, 6, 7} %e A351886 9 4 {0, 2, 4, 5} %e A351886 10 6 {0, 1, 3, 4, 7, 9} %e A351886 11 3 {0, 4, 9} %e A351886 12 8 {0, 1, 2, 3, 5, 6, 7, 11} %p A351886 a:= proc(n) option remember; add( %p A351886 `if`(Bits[And](n, a(j))=0, 1, 0), j=0..n-1) %p A351886 end: %p A351886 seq(a(n), n=0..80); # _Alois P. Heinz_, Feb 28 2022 %o A351886 (PARI) for (n=1, #a=vector(75), print1 (a[n]=sum(k=1, n-1, bitand(a[k], n-1)==0)", ")) %o A351886 (Python) %o A351886 a = [] %o A351886 [a.append(sum(a[k] & n == 0 for k in range(n))) for n in range(74)] %o A351886 print(a) # _Michael S. Branicky_, Feb 24 2022 %Y A351886 Cf. A080100, A088167, A350677, A351887. %K A351886 nonn,base %O A351886 0,3 %A A351886 _Rémy Sigrist_, Feb 23 2022