This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351887 #13 Mar 01 2022 14:51:31 %S A351887 0,1,1,3,1,4,2,7,1,5,2,8,3,8,6,15,1,6,3,11,2,8,7,18,4,9,8,19,7,14,14, %T A351887 31,1,7,4,13,4,12,10,24,5,12,9,21,11,22,19,40,1,8,5,17,5,18,13,35,8, %U A351887 19,15,34,15,32,28,63,1,9,4,15,6,18,12,31,7,18,11 %N A351887 a(n) is the number of k < n such that a(k) AND n = a(k) (where AND denotes the bitwise AND operator). %C A351887 The definition is recursive: a(n) depends on prior terms (a(0), ..., a(n-1)); a(0) = 0 corresponds to an empty sum. %H A351887 Rémy Sigrist, <a href="/A351887/b351887.txt">Table of n, a(n) for n = 0..10000</a> %e A351887 The first terms, alongside the corresponding k's, are: %e A351887 n a(n) k's %e A351887 -- ---- ------------------------ %e A351887 0 0 {} %e A351887 1 1 {0} %e A351887 2 1 {0} %e A351887 3 3 {0, 1, 2} %e A351887 4 1 {0} %e A351887 5 4 {0, 1, 2, 4} %e A351887 6 2 {0, 5} %e A351887 7 7 {0, 1, 2, 3, 4, 5, 6} %e A351887 8 1 {0} %e A351887 9 5 {0, 1, 2, 4, 8} %e A351887 10 2 {0, 6} %e A351887 11 8 {0, 1, 2, 3, 4, 6, 8, 10} %e A351887 12 3 {0, 5, 11} %p A351887 a:= proc(n) option remember; add( %p A351887 `if`(Bits[And](n, a(j))=a(j), 1, 0), j=0..n-1) %p A351887 end: %p A351887 seq(a(n), n=0..80); # _Alois P. Heinz_, Feb 28 2022 %o A351887 (PARI) for (n=1, #a=vector(75), print1 (a[n]=sum(k=1, n-1, bitand(a[k], n-1)==a[k])", ")) %o A351887 (Python) %o A351887 a = [] %o A351887 [a.append(sum(a[k] & n == a[k] for k in range(n))) for n in range(75)] %o A351887 print(a) # _Michael S. Branicky_, Feb 24 2022 %Y A351887 Cf. A088167, A350802, A351886. %K A351887 nonn,base %O A351887 0,4 %A A351887 _Rémy Sigrist_, Feb 23 2022