A351896 Numbers k such that k and k+2 both have an equal number of odd and even digits in their factorial-base representations.
71, 743, 791, 839, 862, 910, 983, 1031, 1079, 1102, 1150, 1223, 1271, 1319, 1342, 1390, 1583, 1631, 1823, 1871, 2063, 2111, 2183, 2231, 2279, 2302, 2350, 2423, 2471, 2519, 2542, 2590, 2663, 2711, 2759, 2782, 2830, 3023, 3071, 3263, 3311, 3503, 3551, 3623, 3671, 3719
Offset: 1
Examples
71 is a term since the factorial-base representations of 71 and 73 are 2321 and 3001, respectively, and both have 2 odd digits and 2 even digits.
Links
Programs
-
Mathematica
max = 7; fctBaseDigits[n_] := IntegerDigits[n, MixedRadix[Range[max, 2, -1]]]; s = Select[Range[1, max!], EvenQ[Length[(d = fctBaseDigits[#])]] && Count[d, _?EvenQ] == Length[d]/2 &]; ind = Position[Differences[s], 2] // Flatten; s[[ind]]