cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351899 Integers k for which there exist two distinct prime nondivisors p, q < k such that, for all i, j >= 0, p^i*q^j mod k is either 1 or is divisible by p or q.

Original entry on oeis.org

5, 10, 16, 18, 19, 20, 21, 22, 38, 48, 50, 51, 54, 60, 61, 67, 75, 77, 78, 80, 85, 90, 91, 98, 100, 108, 120, 122, 126, 127, 134, 147, 150, 154, 160, 170, 182, 189, 201, 204, 210, 217, 234, 234, 240, 252, 254, 255, 266, 268, 288, 291, 294, 300, 310, 320, 328, 336, 340, 348, 360, 362, 364
Offset: 1

Views

Author

Craig J. Beisel, Feb 24 2022

Keywords

Comments

Conjecture: The prime nondivisors p and q are elements of the reduced residue system consisting of the totatives of k. Assume a triple (k,p,q) which satisfies the definition. If P and Q are the two subgroups generated by p and q respectively and p < q then P >= Q.

Examples

			For k = 20 and p, q = (3,7), p^i*q^j mod k can only take on the values 1, 3, 7, 9 which, other than 1, are all divisible by 3 or 7, so 20 is a term.
		

Crossrefs

Cf. A306746.

Programs

  • PARI
    for(k=1, 364, test2=0; forprime(p=2, k-1, forprime(q=p+1, k-2, if(gcd(p, k)==1 && gcd(q, k)==1, test=0; for(i=0, eulerphi(k), for(j=0, eulerphi(k), if(p^i*q^j % k >1 && gcd(p^i*q^j % k, p)==1 && gcd(p^i*q^j % k, q)==1, test=1; ); if(test==1, break(2); ); ); ); if(test==0, test2=1; ); ); ); ); if(test2==1, print1(k, ", "); ); );