cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351902 Number of ways to write n as w^2 + x^2 + y^2 + z^2 + 3*x*y*z, where w is a positive integer, and x,y,z are nonnegative integers with x <= y <= z.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 3, 3, 1, 2, 4, 3, 2, 2, 5, 4, 0, 3, 4, 5, 3, 1, 6, 4, 2, 1, 5, 5, 3, 5, 5, 5, 1, 3, 8, 4, 3, 2, 7, 7, 1, 3, 5, 7, 5, 3, 5, 9, 3, 4, 8, 3, 5, 1, 9, 8, 1, 2, 8, 9, 3, 5, 9, 6, 2, 5, 6, 8, 4, 6, 7, 7, 1, 3, 15, 6, 5, 5, 9, 9, 2, 4, 12, 9, 5, 2, 5, 10, 1, 5, 9, 8, 7, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 25 2022

Keywords

Comments

Conjecture: We have a(n) > 0 except for n = 23. In other words, any positive integer n not equal to 23 can be written as w^2 + x^2 + y^2 + z^2 + 3*x*y*z, where w is a positive integer and x,y,z are nonnegative integers.
It seems that a(n) > 1 for all n > 695.

Examples

			a(60)  = 1 with  60 =  2^2 + 1^2 + 1^2 +  6^2 + 3*1*1*6.
a(128) = 1 with 128 =  8^2 + 0^2 + 0^2 +  8^2 + 3*0*0*8.
a(303) = 1 with 303 = 11^2 + 1^2 + 1^2 + 12^2 + 3*1*1*12.
a(359) = 1 with 359 =  3^2 + 1^2 + 5^2 + 12^2 + 3*1*5*12.
a(383) = 1 with 383 = 11^2 + 1^2 + 3^2 + 12^2 + 3*1*3*12.
a(695) = 1 with 695 = 17^2 + 1^2 + 9^2 +  9^2 + 3*1*9*9.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]];
    tab={};Do[r=0;Do[If[SQ[n-x^2-y^2-z^2-3*x*y*z],r=r+1],{x,0,Sqrt[n/3]},{y,x,Sqrt[(n-x^2)/2]},{z,y,Sqrt[n-x^2-y^2]}];tab=Append[tab,r],{n,1,100}];Print[tab]