cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351923 Number of ordered pairs of positive integers (s,t), s,t <= n, such that (s^t) | n.

This page as a plain text file.
%I A351923 #8 Sep 28 2024 14:46:55
%S A351923 1,3,4,7,6,9,8,13,12,13,12,18,14,17,18,24,18,24,20,26,24,25,24,33,28,
%T A351923 29,32,34,30,37,32,42,36,37,38,47,38,41,42,49,42,49,44,50,51,49,48,61,
%U A351923 52,56,54,58,54,63,58,65,60,61,60,72,62,65,69,78,68,73,68,74,72,77,72,87,74
%N A351923 Number of ordered pairs of positive integers (s,t), s,t <= n, such that (s^t) | n.
%F A351923 a(n) = Sum_{k=1..n} Sum_{i=1..n} (1 - ceiling(n/(k^i)) + floor(n/(k^i))).
%F A351923 a(n) = A309891(n) + n. - _Ridouane Oudra_, Sep 28 2024
%e A351923 a(4) = 7; The 7 pairs are: (1,1), (1,2), (1,3), (1,4), (2,1), (2,2) and (4,1) since all of 1^1, 1^2, 1^3, 1^4, 2^1, 2^2 and 4^1 divide 4.
%p A351923 seq(add(padic[ordp](n,d), d in numtheory[divisors](n) minus {1}) + n, n=1..80); # _Ridouane Oudra_, Sep 28 2024
%Y A351923 Cf. A309891.
%K A351923 nonn
%O A351923 1,2
%A A351923 _Wesley Ivan Hurt_, Feb 25 2022