This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351925 #21 Oct 08 2023 09:29:35 %S A351925 25,289,361,529,729,2401,2601,2809,4761,5329,5929,7569,11449,11881, %T A351925 15129,19881,21609,22801,23409,24649,25281,26569,29241,29929,31329, %U A351925 34969,36481,39601,47961,52441,53361,54289,57121,58081,59049,71289,77841,83521,89401 %N A351925 Squares which are the concatenation of two primes. %C A351925 The first term that is the concatenation of two primes in more than one way is a(11) = 5929 = 5 | 929 = 59 | 29. - _Robert Israel_, Oct 01 2023 %H A351925 Robert Israel, <a href="/A351925/b351925.txt">Table of n, a(n) for n = 1..10000</a> %F A351925 Intersection of A106582 and A000290. %e A351925 25 is the concatenation of 2 and 5, both primes. %e A351925 4761 is the concatenation of 47 and 61, both primes. %p A351925 L:= NULL: count:=0: %p A351925 for x from 1 by 2 while count < 100 do %p A351925 xs:= x^2; %p A351925 for i from 1 to ilog10(xs) do %p A351925 a:= xs mod 10^i; %p A351925 if a > 10^(i-1) and isprime(a) then %p A351925 b:= (xs-a)/10^i; %p A351925 if isprime(b) then %p A351925 L:= L, xs; count:= count+1; break %p A351925 fi fi %p A351925 od od: %p A351925 L; # _Robert Israel_, Oct 01 2023 %o A351925 (PARI) %o A351925 isb(n)={my(d=10); while(d<n, if(isprime(n%d)&&isprime(n\d), return(1)); d*=10); 0} %o A351925 { for(n=1, 300, if(isb(n^2), print1(n^2, ", ")))} \\ _Andrew Howroyd_, Feb 26 2022 %o A351925 (Python) %o A351925 from sympy import isprime %o A351925 from itertools import count, islice %o A351925 def agen(): # generator of terms %o A351925 for k in count(1): %o A351925 s = str(k*k) %o A351925 if any(s[i] != '0' and isprime(int(s[:i])) and isprime(int(s[i:])) for i in range(1, len(s))): %o A351925 yield k*k %o A351925 print(list(islice(agen(), 39))) # _Michael S. Branicky_, Feb 26 2022 %Y A351925 Cf. A000290 (squares), A039686, A106582, inverse of A167535. %Y A351925 Cf. A038692, A225135. %K A351925 nonn,base %O A351925 1,1 %A A351925 _Max Z. Scialabba_, Feb 25 2022