This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351927 #38 Mar 18 2023 08:49:14 %S A351927 1,2,4,10,15,15,15,15,15,15,50,50,101,101,101,101,143,143,143,143,143, %T A351927 143,143,143,143,1916,1916,1916,1916,1916,1916,82286,1134022,1639828, %U A351927 3483159,3483159,3483159,3917963,3917963,3917963,4729774,4729774,9827775,9827775,43622201,43622201,43622201 %N A351927 Smallest positive integer k such that 2^k has no '0' in the last n digits of its ternary expansion. %C A351927 The powers of two are required to have at least n ternary digits, i.e., 2^k >= 3^(n-1). %C A351927 Sloane (1973) conjectured that every power 2^n with n > 15 has a '0' somewhere in its ternary expansion (see A102483 and A346497). %H A351927 Robert I. Saye, <a href="https://arxiv.org/abs/2202.13256">On two conjectures concerning the ternary digits of powers of two</a>, arXiv:2202.13256 [math.NT], 2022. %t A351927 smallest[n_] := Module[{k}, k = Max[1, Ceiling[(n - 1) Log[2, 3]]]; While[MemberQ[Take[IntegerDigits[2^k, 3], -n], 0], ++k]; k]; Table[smallest[n], {n, 1, 20}] %o A351927 (PARI) a(n) = my(k=1); while(!vecmin(Vec(Vecrev(digits(2^k,3)), n)), k++); k; \\ _Michel Marcus_, Feb 26 2022 %o A351927 (Python) %o A351927 from sympy.ntheory.digits import digits %o A351927 def a(n, startk=1): %o A351927 k = max(startk, len(bin(3**(n-1))[2:])) %o A351927 pow2 = 2**k %o A351927 while 0 in digits(pow2, 3)[-n:]: %o A351927 k += 1 %o A351927 pow2 *= 2 %o A351927 return k %o A351927 an = 0 %o A351927 for n in range(1, 32): %o A351927 an = a(n, an) %o A351927 print(an, end=", ") # _Michael S. Branicky_, Mar 10 2022 %o A351927 (Python) %o A351927 from itertools import count %o A351927 def A351927(n): %o A351927 kmax, m = 3**n, (3**(n-1)).bit_length() %o A351927 k2 = pow(2,m,kmax) %o A351927 for k in count(m): %o A351927 a = k2 %o A351927 if 3*a >= kmax: %o A351927 while a > 0: %o A351927 a, b = divmod(a,3) %o A351927 if b == 0: %o A351927 break %o A351927 else: %o A351927 return k %o A351927 k2 = 2*k2 % kmax # _Chai Wah Wu_, Mar 19 2022 %Y A351927 Cf. A004642, A117970, A102483, A346497, A351928. %K A351927 nonn,base %O A351927 1,2 %A A351927 _Robert Saye_, Feb 25 2022