This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351930 #20 Mar 09 2022 06:21:49 %S A351930 1,1,1,1,0,-4,-14,-34,-34,190,1366,5446,11056,-30744,-421420,-2403764, %T A351930 -7434244,9782396,296347996,2257819420,9461601856,-1690329584, %U A351930 -395833164264,-3872875071064,-20629371958040,-17208144880024,893208132927176,10962683317693576 %N A351930 Expansion of e.g.f. exp(x - x^4/24). %F A351930 a(n) = n! * Sum_{k=0..floor(n/4)} (-1/24)^k * binomial(n-3*k,k)/(n-3*k)!. %F A351930 D-finite with recurrence a(n) = a(n-1) - binomial(n-1,3) * a(n-4) for n > 3. %p A351930 a:= proc(n) option remember; `if`(n=0, 1, %p A351930 `if`(n<4, 0, -a(n-4)*binomial(n-1, 3))+a(n-1)) %p A351930 end: %p A351930 seq(a(n), n=0..27); # _Alois P. Heinz_, Feb 26 2022 %o A351930 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x-x^4/4!))) %o A351930 (PARI) a(n) = n!*sum(k=0, n\4, (-1/4!)^k*binomial(n-3*k, k)/(n-3*k)!); %o A351930 (PARI) a(n) = if(n<4, 1, a(n-1)-binomial(n-1, 3)*a(n-4)); %Y A351930 Cf. A351929, A351931. %Y A351930 Cf. A351905, A351932. %K A351930 sign %O A351930 0,6 %A A351930 _Seiichi Manyama_, Feb 26 2022