This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351935 #19 Jun 08 2024 08:51:49 %S A351935 1,1,1,1,1,6,31,106,281,1261,10711,71611,350461,1808236,17037021, %T A351935 170285116,1293714241,8653175441,84433291741,1063629264781, %U A351935 11218379358721,97926941650546,1021280770603171,14623420493573046,197153396050112041,2190425085571083901 %N A351935 Expansion of e.g.f. exp(x / (1 - x^4/24)). %F A351935 a(n) = Sum_{k=0..floor((n-1)/4)} (4*k+1)!/24^k * binomial(n-1,4*k) * a(n-1-4*k) for n > 4. %F A351935 a(n) = n! * Sum_{k=0..floor(n/4)} binomial(n-3*k-1,k)/(24^k * (n-4*k)!). - _Seiichi Manyama_, Jun 08 2024 %t A351935 m = 25; Range[0, m]! * CoefficientList[Series[Exp[x/(1 - x^4/24)], {x, 0, m}], x] (* _Amiram Eldar_, Feb 26 2022 *) %o A351935 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x^4/24)))) %o A351935 (PARI) a(n) = if(n<5, 1, sum(k=0, (n-1)\4, (4*k+1)!/24^k*binomial(n-1, 4*k)*a(n-1-4*k))); %Y A351935 Cf. A000262, A351933, A351934, A351936. %Y A351935 Cf. A275423. %K A351935 nonn %O A351935 0,6 %A A351935 _Seiichi Manyama_, Feb 26 2022