cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351936 Expansion of e.g.f. exp(x / (1 - x^5/5!)).

This page as a plain text file.
%I A351936 #18 Jun 08 2024 08:51:54
%S A351936 1,1,1,1,1,1,7,43,169,505,1261,5545,55441,442729,2540539,11381371,
%T A351936 54534481,548974609,6572212921,59711454433,413207026561,2551872368305,
%U A351936 24405087826351,356232375255835,4526838244526137,44179554690486601,358234717042702501
%N A351936 Expansion of e.g.f. exp(x / (1 - x^5/5!)).
%F A351936 a(n) = Sum_{k=0..floor((n-1)/5)} (5*k+1)!/(5!)^k * binomial(n-1,5*k) * a(n-1-5*k) for n > 5.
%F A351936 a(n) = n! * Sum_{k=0..floor(n/5)} binomial(n-4*k-1,k)/(120^k * (n-5*k)!). - _Seiichi Manyama_, Jun 08 2024
%t A351936 m = 26; Range[0, m]! * CoefficientList[Series[Exp[x/(1 - x^5/5!)], {x, 0, m}], x] (* _Amiram Eldar_, Feb 26 2022 *)
%o A351936 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x^5/5!))))
%o A351936 (PARI) a(n) = if(n<6, 1, sum(k=0, (n-1)\5, (5*k+1)!/5!^k*binomial(n-1, 5*k)*a(n-1-5*k)));
%Y A351936 Cf. A000262, A351933, A351934, A351935.
%K A351936 nonn
%O A351936 0,7
%A A351936 _Seiichi Manyama_, Feb 26 2022