cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351954 Arithmetic derivative without its inherited divisor applied to the prime shadow of the factorial base exp-function: a(n) = A342001(A181819(A276076(n))).

This page as a plain text file.
%I A351954 #19 Apr 30 2022 22:51:09
%S A351954 0,1,1,2,1,5,1,2,2,3,5,8,1,5,5,8,2,7,1,7,7,12,8,31,1,2,2,3,5,8,2,3,3,
%T A351954 4,8,11,5,8,8,11,7,10,7,12,12,17,31,46,1,5,5,8,2,7,5,8,8,11,7,10,2,7,
%U A351954 7,10,3,9,8,31,31,46,13,41,1,7,7,12,8,31,7,12,12,17,31,46,8,31,31,46,13,41,2,9,9,14,11
%N A351954 Arithmetic derivative without its inherited divisor applied to the prime shadow of the factorial base exp-function: a(n) = A342001(A181819(A276076(n))).
%C A351954 Compare the scatter plot to those of A275735, A353575 and of A353577. - _Antti Karttunen_, Apr 30 2022
%H A351954 Antti Karttunen, <a href="/A351954/b351954.txt">Table of n, a(n) for n = 0..20160</a>
%H A351954 <a href="/index/Fa#facbase">Index entries for sequences related to factorial base representation</a>
%F A351954 a(n) = A342001(A275735(n)) = A351945(A276076(n)).
%F A351954 a(n) = A353577(A351576(n)). - _Antti Karttunen_, Apr 30 2022
%o A351954 (PARI)
%o A351954 A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
%o A351954 A003557(n) = (n/factorback(factorint(n)[, 1]));
%o A351954 A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
%o A351954 A276076(n) = { my(i=0,m=1,f=1,nextf); while((n>0),i=i+1; nextf = (i+1)*f; if((n%nextf),m*=(prime(i)^((n%nextf)/f));n-=(n%nextf));f=nextf); m; };
%o A351954 A342001(n) = (A003415(n) / A003557(n));
%o A351954 A351945(n) = A342001(A181819(n));
%o A351954 A351954(n) = A351945(A276076(n));
%Y A351954 Cf. A003415, A003557, A181819, A275735, A276076, A342001, A351576, A351945, A351952, A353575, A353577.
%Y A351954 Cf. A051683 (positions of 1's).
%K A351954 nonn,base,easy,look
%O A351954 0,4
%A A351954 _Antti Karttunen_, Apr 02 2022
%E A351954 Verbal description added to the definition by _Antti Karttunen_, Apr 30 2022