This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351960 #7 Feb 27 2022 22:24:35 %S A351960 1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,8,8,8,8,8,8,9,7,7,7,7,7,9,6,16,6,6,6,6, %T A351960 16,6,7,9,11,9,9,9,11,9,7,16,6,16,32,16,16,32,16,6,16,15,11,9,11,17, %U A351960 11,17,11,9,11,15,32,64,32,16,32,10,10,32,16,32,64,32,65,17,13,17,11,17,13,17,11,17,13,17,65 %N A351960 Square array A(n,k) = A156552(A005940(1+n) + A005940(1+k)), read by antidiagonals. %C A351960 The indices run as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), etc. The array is symmetric. %H A351960 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %e A351960 The top left corner of the array: %e A351960 |n= 0 1 2 3 4 5 6 7 8 9 10 11 12 %e A351960 -----+-------------------------------------------------------------------------- %e A351960 k= 0 | 1, 2, 3, 4, 5, 8, 9, 6, 7, 16, 15, 32, 65, %e A351960 1 | 2, 3, 4, 5, 8, 7, 16, 9, 6, 11, 64, 17, 14, %e A351960 2 | 3, 4, 5, 8, 7, 6, 11, 16, 9, 32, 13, 10, 35, %e A351960 3 | 4, 5, 8, 7, 6, 9, 32, 11, 16, 17, 128, 15, 512, %e A351960 4 | 5, 8, 7, 6, 9, 16, 17, 32, 11, 10, 19, 64, 21, %e A351960 5 | 8, 7, 6, 9, 16, 11, 10, 17, 32, 15, 18, 13, 1024, %e A351960 6 | 9, 16, 11, 32, 17, 10, 13, 64, 15, 128, 23, 18, 129, %e A351960 7 | 6, 9, 16, 11, 32, 17, 64, 15, 10, 13, 256, 19, 34, %e A351960 8 | 7, 6, 9, 16, 11, 32, 15, 10, 17, 64, 33, 128, 31, %e A351960 9 | 16, 11, 32, 17, 10, 15, 128, 13, 64, 19, 12, 33, 20, %e A351960 10 | 15, 64, 13, 128, 19, 18, 23, 256, 33, 12, 21, 14, 39, %e A351960 11 | 32, 17, 10, 15, 64, 13, 18, 19, 128, 33, 14, 23, 2048, %e A351960 12 | 65, 14, 35, 512, 21, 1024, 129, 34, 31, 20, 39, 2048, 25, %e A351960 13 | 128, 19, 18, 33, 256, 23, 14, 65, 12, 35, 34, 21, 8192, %e A351960 14 | 35, 512, 21, 1024, 31, 34, 27, 20, 129, 2048, 37, 66, 131, %e A351960 15 | 64, 13, 128, 19, 18, 33, 12, 23, 256, 65, 1024, 35, 4096, %e A351960 16 | 11, 32, 17, 10, 15, 64, 19, 128, 13, 18, 65, 256, 27, %o A351960 (PARI) %o A351960 up_to = 104; %o A351960 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; %o A351960 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; %o A351960 A351960sq(n,k) = A156552(A005940(1+n)+A005940(1+k)); %o A351960 A351960list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0,oo, for(col=0,a, i++; if(i > #v, return(v)); v[i] = A351960sq(col,(a-(col))))); (v); }; %o A351960 v351960 = A351960list(up_to); %o A351960 A351960(n) = v351960[1+n]; %Y A351960 Cf. A005940, A156552. %Y A351960 Cf. A005408 (main diagonal), A297163 (row/column 0). %Y A351960 Cf. also A341510, A341520, A351961, A351962. %K A351960 nonn,tabl %O A351960 0,2 %A A351960 _Antti Karttunen_, Feb 26 2022