This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351961 #6 Feb 27 2022 22:24:46 %S A351961 0,0,0,0,1,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,0,1,0,3,0,1,0,0,0,2,0,0,2, %T A351961 0,0,0,1,2,1,4,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,5,0,3,0,1,0,0,0, %U A351961 0,0,0,2,2,0,0,0,0,0,0,1,2,1,0,1,6,1,0,1,2,1,0,0,0,2,0,4,0,0,0,0,4,0,2,0,0 %N A351961 Square array A(n,k) = A156552(gcd(A005940(1+n), A005940(1+k))), read by antidiagonals. %C A351961 The indices run as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), etc. The array is symmetric. %H A351961 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A351961 For all x, y >= 0, A(x, y) = A(x, A351960(x,y)) = A(A351960(x,y), y). %e A351961 The top left corner of the array: %e A351961 n= 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 %e A351961 -----|-------------------------------------------------------------- %e A351961 k= 0 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, %e A351961 1 | 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, %e A351961 2 | 0, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 2, 0, 2, 2, 0, 0, 0, %e A351961 3 | 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, 0, 3, 0, 1, %e A351961 4 | 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 4, 0, 4, 0, 0, 0, 0, 0, %e A351961 5 | 0, 1, 2, 1, 0, 5, 2, 1, 0, 1, 2, 5, 0, 5, 2, 1, 0, 1, %e A351961 6 | 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 2, 0, 6, 6, 0, 0, 0, %e A351961 7 | 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, %e A351961 8 | 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 8, %e A351961 9 | 0, 1, 0, 1, 4, 1, 0, 1, 0, 9, 4, 1, 4, 1, 0, 1, 0, 1, %e A351961 10 | 0, 0, 2, 0, 4, 2, 2, 0, 0, 4, 10, 2, 4, 2, 2, 0, 0, 0, %e A351961 11 | 0, 1, 2, 3, 0, 5, 2, 3, 0, 1, 2, 11, 0, 5, 2, 3, 0, 1, %e A351961 12 | 0, 0, 0, 0, 4, 0, 0, 0, 0, 4, 4, 0, 12, 0, 0, 0, 0, 0, %e A351961 13 | 0, 1, 2, 1, 0, 5, 6, 1, 0, 1, 2, 5, 0, 13, 6, 1, 0, 1, %e A351961 14 | 0, 0, 2, 0, 0, 2, 6, 0, 0, 0, 2, 2, 0, 6, 14, 0, 0, 0, %e A351961 15 | 0, 1, 0, 3, 0, 1, 0, 7, 0, 1, 0, 3, 0, 1, 0, 15, 0, 1, %e A351961 16 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 16, 0, %e A351961 17 | 0, 1, 0, 1, 0, 1, 0, 1, 8, 1, 0, 1, 0, 1, 0, 1, 0, 17, %o A351961 (PARI) %o A351961 up_to = 104; \\ 10439 = binomial(144+1,2)-1 %o A351961 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; %o A351961 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; %o A351961 A351961sq(n,k) = A156552(gcd(A005940(1+n),A005940(1+k))); %o A351961 A351961list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0,oo, for(col=0,a, i++; if(i > #v, return(v)); v[i] = A351961sq(col,(a-(col))))); (v); }; %o A351961 v351961 = A351961list(up_to); %o A351961 A351961(n) = v351961[1+n]; %Y A351961 Cf. A003989, A005940, A156552. %Y A351961 Cf. A001477 (main diagonal). %Y A351961 Cf. also A341520, A351960, A351962. %K A351961 nonn,tabl %O A351961 0,13 %A A351961 _Antti Karttunen_, Feb 26 2022