cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351961 Square array A(n,k) = A156552(gcd(A005940(1+n), A005940(1+k))), read by antidiagonals.

This page as a plain text file.
%I A351961 #6 Feb 27 2022 22:24:46
%S A351961 0,0,0,0,1,0,0,0,0,0,0,1,2,1,0,0,0,0,0,0,0,0,1,0,3,0,1,0,0,0,2,0,0,2,
%T A351961 0,0,0,1,2,1,4,1,2,1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,3,0,5,0,3,0,1,0,0,0,
%U A351961 0,0,0,2,2,0,0,0,0,0,0,1,2,1,0,1,6,1,0,1,2,1,0,0,0,2,0,4,0,0,0,0,4,0,2,0,0
%N A351961 Square array A(n,k) = A156552(gcd(A005940(1+n), A005940(1+k))), read by antidiagonals.
%C A351961 The indices run as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), etc. The array is symmetric.
%H A351961 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>
%F A351961 For all x, y >= 0, A(x, y) = A(x, A351960(x,y)) = A(A351960(x,y), y).
%e A351961 The top left corner of the array:
%e A351961    n=  0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17
%e A351961 -----|--------------------------------------------------------------
%e A351961 k= 0 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  0,
%e A351961    1 | 0, 1, 0, 1, 0, 1, 0, 1, 0, 1,  0,  1,  0,  1,  0,  1,  0,  1,
%e A351961    2 | 0, 0, 2, 0, 0, 2, 2, 0, 0, 0,  2,  2,  0,  2,  2,  0,  0,  0,
%e A351961    3 | 0, 1, 0, 3, 0, 1, 0, 3, 0, 1,  0,  3,  0,  1,  0,  3,  0,  1,
%e A351961    4 | 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,  4,  0,  4,  0,  0,  0,  0,  0,
%e A351961    5 | 0, 1, 2, 1, 0, 5, 2, 1, 0, 1,  2,  5,  0,  5,  2,  1,  0,  1,
%e A351961    6 | 0, 0, 2, 0, 0, 2, 6, 0, 0, 0,  2,  2,  0,  6,  6,  0,  0,  0,
%e A351961    7 | 0, 1, 0, 3, 0, 1, 0, 7, 0, 1,  0,  3,  0,  1,  0,  7,  0,  1,
%e A351961    8 | 0, 0, 0, 0, 0, 0, 0, 0, 8, 0,  0,  0,  0,  0,  0,  0,  0,  8,
%e A351961    9 | 0, 1, 0, 1, 4, 1, 0, 1, 0, 9,  4,  1,  4,  1,  0,  1,  0,  1,
%e A351961   10 | 0, 0, 2, 0, 4, 2, 2, 0, 0, 4, 10,  2,  4,  2,  2,  0,  0,  0,
%e A351961   11 | 0, 1, 2, 3, 0, 5, 2, 3, 0, 1,  2, 11,  0,  5,  2,  3,  0,  1,
%e A351961   12 | 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,  4,  0, 12,  0,  0,  0,  0,  0,
%e A351961   13 | 0, 1, 2, 1, 0, 5, 6, 1, 0, 1,  2,  5,  0, 13,  6,  1,  0,  1,
%e A351961   14 | 0, 0, 2, 0, 0, 2, 6, 0, 0, 0,  2,  2,  0,  6, 14,  0,  0,  0,
%e A351961   15 | 0, 1, 0, 3, 0, 1, 0, 7, 0, 1,  0,  3,  0,  1,  0, 15,  0,  1,
%e A351961   16 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  0,  0,  0,  0,  0,  0, 16,  0,
%e A351961   17 | 0, 1, 0, 1, 0, 1, 0, 1, 8, 1,  0,  1,  0,  1,  0,  1,  0, 17,
%o A351961 (PARI)
%o A351961 up_to = 104; \\ 10439 = binomial(144+1,2)-1
%o A351961 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
%o A351961 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
%o A351961 A351961sq(n,k) = A156552(gcd(A005940(1+n),A005940(1+k)));
%o A351961 A351961list(up_to) = { my(v = vector(1+up_to), i=0); for(a=0,oo, for(col=0,a, i++; if(i > #v, return(v)); v[i] = A351961sq(col,(a-(col))))); (v); };
%o A351961 v351961 = A351961list(up_to);
%o A351961 A351961(n) = v351961[1+n];
%Y A351961 Cf. A003989, A005940, A156552.
%Y A351961 Cf. A001477 (main diagonal).
%Y A351961 Cf. also A341520, A351960, A351962.
%K A351961 nonn,tabl
%O A351961 0,13
%A A351961 _Antti Karttunen_, Feb 26 2022