This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351964 #13 Jul 16 2022 11:32:08 %S A351964 0,1,2,0,3,0,1,4,1,0,1,2,0,1,5,0,3,0,2,0,2,0,3,0,1,0,4,0,6,1,0,1,0,1, %T A351964 0,1,0,3,0,5,0,2,0,2,0,2,4,0,3,7,0,1,0,1,0,1,0,1,2,1,0,1,0,2,1,0,1,3, %U A351964 0,3,0,2,0,2,6,0,5,0,4,0,2,0,1,0,1,0,1,0,1,0,1,0,1,0,1,2,0,4,0,1,2,0,8,0,4 %N A351964 The 2-adic valuation of A109812(n); The exponent of the highest power of 2 dividing A109812(n). %H A351964 Antti Karttunen, <a href="/A351964/b351964.txt">Table of n, a(n) for n = 1..100000</a> %H A351964 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A351964 a(n) = A007814(A109812(n)). %o A351964 (PARI) %o A351964 v109812 = readvec("b109812_to10e5.txt"); \\ Prepared from b-file data with gawk ' { print $2 } ' %o A351964 up_to = #v109812; %o A351964 A109812(n) = v109812[n]; %o A351964 A007814(n) = valuation(n,2); %o A351964 A351964(n) = A007814(A109812(n)); %o A351964 (Python) %o A351964 from itertools import count, islice %o A351964 def A351964_gen(): # generator of terms %o A351964 yield 0 %o A351964 l1, s, b = 1, 2, set() %o A351964 while True: %o A351964 for i in count(s): %o A351964 if not (i in b or i & l1): %o A351964 yield (~i&i-1).bit_length() %o A351964 l1 = i %o A351964 b.add(i) %o A351964 while s in b: %o A351964 b.remove(s) %o A351964 s += 1 %o A351964 break %o A351964 A351964_list = list(islice(A351964_gen(),30)) # _Chai Wah Wu_, Jul 16 2022 %Y A351964 Cf. A007814, A109812, A351578, A351965. %K A351964 nonn,base %O A351964 1,3 %A A351964 _Antti Karttunen_, Apr 07 2022