cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351975 Numbers k such that A037276(k) == -1 (mod k).

Original entry on oeis.org

1, 6, 14, 18, 48, 124, 134, 284, 3135, 4221, 9594, 16468, 34825, 557096, 711676, 746464, 1333334, 2676977, 6514063, 11280468, 16081252, 35401658, 53879547, 133333334, 198485452, 223856659, 1333333334, 2514095219, 2956260256, 3100811124, 10912946218, 19780160858
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 26 2022

Keywords

Comments

Numbers k such that the concatenation of prime factors of k is 1 less than a multiple of k.
Contains 2*m for m in A093170.
Terms k where k-1 is prime include 6, 14, 18, 48 and 284. Are there others?

Examples

			a(4) = 48 is a term because 48=2*2*2*2*3 and 22223 == -1 (mod 48).
		

Crossrefs

Programs

  • Maple
    tcat:= proc(x,y) x*10^(1+ilog10(y))+y end proc:
    filter:= proc(n) local F,t,i;
    F:= map(t -> t[1]$t[2], sort(ifactors(n)[2],(a,b)->a[1]
    				
  • Python
    from sympy import factorint
    def A037276(n):
        if n == 1: return 1
        return int("".join(str(p)*e for p, e in sorted(factorint(n).items())))
    def afind(limit, startk=1):
        for k in range(startk, limit+1):
            if (A037276(k) + 1)%k == 0:
                print(k, end=", ")
    afind(10**6) # Michael S. Branicky, Feb 27 2022
    # adapted and corrected by Martin Ehrenstein, Mar 06 2022
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A351975_gen(startvalue=1): # generator of terms >= startvalue
        for k in count(max(startvalue,1)):
            c = 0
            for d in sorted(factorint(k,multiple=True)):
                c = (c*10**len(str(d)) + d) % k
            if c == k-1:
                yield k
    A351975_list = list(islice(A351975_gen(),10)) # Chai Wah Wu, Feb 28 2022

Extensions

a(24)-a(25) from Michael S. Branicky, Feb 27 2022
Prepended 1 and more terms from Martin Ehrenstein, Feb 28 2022