A351975 Numbers k such that A037276(k) == -1 (mod k).
1, 6, 14, 18, 48, 124, 134, 284, 3135, 4221, 9594, 16468, 34825, 557096, 711676, 746464, 1333334, 2676977, 6514063, 11280468, 16081252, 35401658, 53879547, 133333334, 198485452, 223856659, 1333333334, 2514095219, 2956260256, 3100811124, 10912946218, 19780160858
Offset: 1
Examples
a(4) = 48 is a term because 48=2*2*2*2*3 and 22223 == -1 (mod 48).
Links
- Martin Ehrenstein, Table of n, a(n) for n = 1..38
Programs
-
Maple
tcat:= proc(x,y) x*10^(1+ilog10(y))+y end proc: filter:= proc(n) local F,t,i; F:= map(t -> t[1]$t[2], sort(ifactors(n)[2],(a,b)->a[1]
-
Python
from sympy import factorint def A037276(n): if n == 1: return 1 return int("".join(str(p)*e for p, e in sorted(factorint(n).items()))) def afind(limit, startk=1): for k in range(startk, limit+1): if (A037276(k) + 1)%k == 0: print(k, end=", ") afind(10**6) # Michael S. Branicky, Feb 27 2022 # adapted and corrected by Martin Ehrenstein, Mar 06 2022
-
Python
from itertools import count, islice from sympy import factorint def A351975_gen(startvalue=1): # generator of terms >= startvalue for k in count(max(startvalue,1)): c = 0 for d in sorted(factorint(k,multiple=True)): c = (c*10**len(str(d)) + d) % k if c == k-1: yield k A351975_list = list(islice(A351975_gen(),10)) # Chai Wah Wu, Feb 28 2022
Extensions
a(24)-a(25) from Michael S. Branicky, Feb 27 2022
Prepended 1 and more terms from Martin Ehrenstein, Feb 28 2022
Comments