This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351976 #8 Mar 18 2022 00:20:54 %S A351976 1,1,0,1,1,1,1,1,2,2,2,4,5,5,5,6,9,11,11,16,21,22,24,31,41,46,48,64, %T A351976 82,91,98,120,155,175,188,237,297,329,357,437,544,607,658,803,987, %U A351976 1098,1196,1432,1749,1955,2126,2541,3071,3417,3729,4406,5291,5890,6426 %N A351976 Number of integer partitions of n with (1) as many odd parts as odd conjugate parts and (2) as many even parts as even conjugate parts. %e A351976 The a(n) partitions for selected n: %e A351976 n = 3 8 11 12 15 16 %e A351976 ---------------------------------------------------------- %e A351976 (21) (332) (4322) (4332) (4443) (4444) %e A351976 (4211) (4331) (4422) (54321) (53332) %e A351976 (4421) (4431) (632211) (55222) %e A351976 (611111) (53211) (633111) (55411) %e A351976 (621111) (642111) (633211) %e A351976 (81111111) (642211) %e A351976 (643111) %e A351976 (7321111) %e A351976 (82111111) %t A351976 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A351976 Table[Length[Select[IntegerPartitions[n],Count[#,_?OddQ]==Count[conj[#],_?OddQ]&&Count[#,_?EvenQ]==Count[conj[#],_?EvenQ]&]],{n,0,30}] %Y A351976 The first condition alone is A277103, ranked by A350944, strict A000700. %Y A351976 The second condition alone is A350948, ranked by A350945. %Y A351976 These partitions are ranked by A350949. %Y A351976 A000041 counts integer partitions. %Y A351976 A122111 represents partition conjugation using Heinz numbers. %Y A351976 A195017 = # of even parts - # of odd parts. %Y A351976 There are four statistics: %Y A351976 - A257991 = # of odd parts, conjugate A344616. %Y A351976 - A257992 = # of even parts, conjugate A350847. %Y A351976 There are four other possible pairings of statistics: %Y A351976 - A045931: # even = # odd, ranked by A325698, strict A239241. %Y A351976 - A045931: # even conj = # odd conj, ranked by A350848, strict A352129. %Y A351976 - A277579: # even = # odd conj, ranked by A349157, strict A352131. %Y A351976 - A277579: # even conj = # odd, ranked by A350943, strict A352130. %Y A351976 There are two other possible double-pairings of statistics: %Y A351976 - A351977: # even = # odd, # even conj = # odd conj, ranked by A350946. %Y A351976 - A351981: # even = # odd conj, # odd = # even conj, ranked by A351980. %Y A351976 The case of all four statistics equal is A351978, ranked by A350947. %Y A351976 Cf. A088218, A098123, A130780, A171966, A236559, A236914, A241638, A350849, A350941, A350942, A350950, A350951. %K A351976 nonn %O A351976 0,9 %A A351976 _Gus Wiseman_, Mar 14 2022