This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351977 #5 Mar 18 2022 00:21:02 %S A351977 1,0,0,1,0,0,0,0,1,2,1,0,2,0,2,4,2,1,6,6,7,9,11,10,13,17,17,21,28,36, %T A351977 35,41,58,71,72,90,106,121,142,178,191,216,269,320,344,400,486,564, %U A351977 633,734,867,991,1130,1312,1509,1702,1978,2288,2582,2917,3404 %N A351977 Number of integer partitions of n with as many even parts as odd parts and as many even conjugate parts as odd conjugate parts. %e A351977 The a(n) partitions for selected n (A..C = 10..12): %e A351977 n = 3 9 15 18 20 %e A351977 ---------------------------------------------------------- %e A351977 (21) (63) (A5) (8433) (8543) %e A351977 (222111) (632211) (8532) (8741) %e A351977 (642111) (8631) (C611) %e A351977 (2222211111) (43322211) (43332221) %e A351977 (44322111) (44432111) %e A351977 (44421111) (84221111) %e A351977 (422222111111) %t A351977 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; %t A351977 Table[Length[Select[IntegerPartitions[n],Count[#,_?OddQ]==Count[#,_?EvenQ]&&Count[conj[#],_?OddQ]==Count[conj[#],_?EvenQ]&]],{n,0,30}] %Y A351977 The first condition alone is A045931, ranked by A325698, strict A239241. %Y A351977 The second condition alone is A045931, ranked by A350848, strict A352129. %Y A351977 These partitions are ranked by A350946. %Y A351977 The strict case is A352128. %Y A351977 There are four statistics: %Y A351977 - A257991 = # of odd parts, conjugate A344616. %Y A351977 - A257992 = # of even parts, conjugate A350847. %Y A351977 There are four additional pairings of statistics: %Y A351977 - A277579: # even = # odd conj, ranked by A349157, strict A352131. %Y A351977 - A277579: # even conj = # odd, ranked by A350943, strict A352130. %Y A351977 - A277103: # odd = # odd conj, ranked by A350944, strict A000700. %Y A351977 - A350948: # even = # even conj, ranked by A350945. %Y A351977 There are two additional double-pairings of statistics: %Y A351977 - A351981, ranked by A351980. %Y A351977 - A351976, ranked by A350949. %Y A351977 The case of all four statistics equal is A351978, ranked by A350947. %Y A351977 Cf. A000041, A000070, A088218, A098123, A130780, A171966, A195017, A236559, A236914, A241638, A350849. %K A351977 nonn %O A351977 0,10 %A A351977 _Gus Wiseman_, Mar 14 2022