cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351978 Number of integer partitions of n for which the number of even parts, the number of odd parts, the number of even conjugate parts, and the number of odd conjugate parts are all equal.

This page as a plain text file.
%I A351978 #6 Mar 18 2022 00:21:09
%S A351978 1,0,0,1,0,0,0,0,1,0,1,0,2,0,0,2,0,1,0,6,1,3,1,8,5,3,5,7,14,2,13,9,28,
%T A351978 5,22,26,44,17,30,60,59,42,41,120,84,84,66,204,143,144,131,325,268,
%U A351978 226,261,486,498,344,488,739,874
%N A351978 Number of integer partitions of n for which the number of even parts, the number of odd parts, the number of even conjugate parts, and the number of odd conjugate parts are all equal.
%e A351978 The a(n) partitions for selected n (A = 10):
%e A351978 n = 3    12     19       21       23       24         27
%e A351978    --------------------------------------------------------------
%e A351978     21   4332   633322   643332   644333   84332211   655443
%e A351978          4431   643321   654321   654332   84441111   655542
%e A351978                 644311   665211   654431   85322211   665541
%e A351978                 653221            655322   86322111   666333
%e A351978                 654211            655421   86421111   666531
%e A351978                 664111            664331              A522221111
%e A351978                                   665321              A622211111
%e A351978                                   666311
%t A351978 conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
%t A351978 Table[Length[Select[IntegerPartitions[n],Count[#,_?EvenQ]==Count[#,_?OddQ]==Count[conj[#],_?EvenQ]==Count[conj[#],_?OddQ]&]],{n,0,30}]
%Y A351978 The strict case appears to be the indicator function for A014105.
%Y A351978 These partitions are ranked by A350947.
%Y A351978 There are four statistics:
%Y A351978 - A257991 = # of odd parts, conjugate A344616.
%Y A351978 - A257992 = # of even parts, conjugate A350847.
%Y A351978 There are six pairings of statistics:
%Y A351978 - A045931: # of even parts = # of odd parts:
%Y A351978   - ordered A098123
%Y A351978   - strict A239241
%Y A351978   - ranked by A325698
%Y A351978 - A045931: # even conj = # odd conj, ranked by A350848, strict A352129.
%Y A351978 - A277579: # even = # odd conj, ranked by A349157, strict A352131.
%Y A351978 - A277103: # odd = # odd conj, ranked by A350944, strict A000700.
%Y A351978 - A277579: # even conj = # odd, ranked by A350943, strict A352130.
%Y A351978 - A350948: # even = # even conj, ranked by A350945.
%Y A351978 There are three double-pairings of statistics:
%Y A351978 - A351976, ranked by A350949.
%Y A351978 - A351977, ranked by A350946.
%Y A351978 - A351981, ranked by A351980.
%Y A351978 A000041 counts integer partitions, strict A000009.
%Y A351978 A103919 and A116482 count partitions by sum and number of odd/even parts.
%Y A351978 A195017 = # of even parts - # of odd parts.
%Y A351978 Cf. A000070, A122111, A130780, A171966, A236559, A236914, A350849, A350941, A350942, A350950, A350951.
%K A351978 nonn
%O A351978 0,13
%A A351978 _Gus Wiseman_, Mar 15 2022