cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351979 Numbers whose prime factorization has all odd prime indices and all even prime exponents.

This page as a plain text file.
%I A351979 #12 Sep 19 2022 07:23:31
%S A351979 1,4,16,25,64,100,121,256,289,400,484,529,625,961,1024,1156,1600,1681,
%T A351979 1936,2116,2209,2500,3025,3481,3844,4096,4489,4624,5329,6400,6724,
%U A351979 6889,7225,7744,8464,8836,9409,10000,10609,11881,12100,13225,13924,14641,15376
%N A351979 Numbers whose prime factorization has all odd prime indices and all even prime exponents.
%C A351979 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239, length A001222.
%C A351979 A number's prime signature is the sequence of positive exponents in its prime factorization, which is row n of A124010, length A001221, sum A001222.
%C A351979 Also Heinz numbers of integer partitions with all odd parts and all even multiplicities, counted by A035457 (see Emeric Deutsch's comment there).
%H A351979 Amiram Eldar, <a href="/A351979/b351979.txt">Table of n, a(n) for n = 1..10000</a>
%F A351979 Squares of elements of A066208.
%F A351979 Intersection of A066208 and A000290.
%F A351979 A257991(a(n)) = A001222(a(n)).
%F A351979 A162641(a(n)) = A001221(a(n)).
%F A351979 A162642(a(n)) = A257992(a(n)) = 0.
%F A351979 Sum_{n>=1} 1/a(n) = 1/Product_{k>=1} (1 - 1/prime(2*k-1)^2) = 1.4135142... . - _Amiram Eldar_, Sep 19 2022
%e A351979 The terms together with their prime indices begin:
%e A351979      1: 1
%e A351979      4: prime(1)^2
%e A351979     16: prime(1)^4
%e A351979     25: prime(3)^2
%e A351979     64: prime(1)^6
%e A351979    100: prime(1)^2 prime(3)^2
%e A351979    121: prime(5)^2
%e A351979    256: prime(1)^8
%e A351979    289: prime(7)^2
%e A351979    400: prime(1)^4 prime(3)^2
%e A351979    484: prime(1)^2 prime(5)^2
%e A351979    529: prime(9)^2
%e A351979    625: prime(3)^4
%e A351979    961: prime(11)^2
%e A351979   1024: prime(1)^10
%e A351979   1156: prime(1)^2 prime(7)^2
%e A351979   1600: prime(1)^6 prime(3)^2
%e A351979   1681: prime(13)^2
%e A351979   1936: prime(1)^4 prime(5)^2
%t A351979 Select[Range[1000],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
%o A351979 (Python)
%o A351979 from sympy import factorint, primepi
%o A351979 def ok(n):
%o A351979     return all(primepi(p)%2==1 and e%2==0 for p, e in factorint(n).items())
%o A351979 print([k for k in range(15500) if ok(k)]) # _Michael S. Branicky_, Mar 12 2022
%Y A351979 The second condition alone (exponents all even) is A000290, counted by A035363.
%Y A351979 The distinct prime factors of terms all come from A031368.
%Y A351979 These partitions are counted by A035457 or A000009 aerated.
%Y A351979 The first condition alone (indices all odd) is A066208, counted by A000009.
%Y A351979 The squarefree square roots are A258116, even A258117.
%Y A351979 A056166 = exponents all prime, counted by A055923.
%Y A351979 A066207 = indices all even, counted by complement of A086543.
%Y A351979 A076610 = indices all prime, counted by A000607.
%Y A351979 A109297 = same indices as exponents, counted by A114640.
%Y A351979 A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
%Y A351979 A124010 gives prime signature, sorted A118914, length A001221, sum A001222.
%Y A351979 A162641 counts even exponents, odd A162642.
%Y A351979 A257991 counts odd indices, even A257992.
%Y A351979 A268335 = exponents all odd, counted by A055922.
%Y A351979 A325131 = disjoint indices from exponents, counted by A114639.
%Y A351979 A346068 = indices and exponents all prime, counted by A351982.
%Y A351979 A352140 = even indices with odd exponents, counted by A055922 (aerated).
%Y A351979 A352141 = even indices with even exponents, counted by A035444.
%Y A351979 A352142 = odd indices and odd multiplicities, counted by A117958.
%Y A351979 Cf. A000720, A028260, A045931, A055396, A061395, A106529, A181819, A195017, A276078, A324588, A325698, A325700.
%K A351979 nonn
%O A351979 1,2
%A A351979 _Gus Wiseman_, Mar 11 2022