A351981 Number of integer partitions of n with as many even parts as odd conjugate parts, and as many odd parts as even conjugate parts.
1, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 2, 2, 2, 4, 2, 1, 6, 8, 7, 9, 13, 14, 15, 19, 21, 23, 32, 40, 41, 45, 66, 81, 80, 96, 124, 139, 160, 194, 221, 246, 303, 360, 390, 446, 546, 634, 703, 810, 971, 1115, 1250, 1448, 1685, 1910
Offset: 0
Keywords
Examples
The a(n) partitions for selected n: n = 3 9 15 18 19 20 21 ----------------------------------------------------------- 21 4221 622221 633222 633322 644321 643332 4311 632211 643221 643321 653321 654321 642111 643311 644221 654221 665211 651111 644211 644311 654311 82222221 653211 653221 82222211 83222211 663111 653311 84221111 84222111 654211 86111111 85221111 664111 86211111 87111111 For example, the partition (6,6,3,1,1,1) has conjugate (6,3,3,2,2,2), and has 2 even, 4 odd, 4 even conjugate, and 2 odd conjugate parts, so is counted under a(18).
Crossrefs
These partitions are ranked by A351980.
There are four statistics:
There are four other pairings of statistics:
- A045931: # of even parts = # of odd parts:
- conjugate also A045931
- ordered A098123
- strict A239241
- ranked by A325698
- conjugate ranked by A350848
There are two other double-pairings of statistics:
Programs
-
Mathematica
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]]; Table[Length[Select[IntegerPartitions[n],Count[#,?EvenQ]==Count[conj[#],?OddQ]&&Count[#,?OddQ]==Count[conj[#],?EvenQ]&]],{n,0,30}]