This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351983 #13 Jan 02 2023 21:55:17 %S A351983 0,0,1,2,5,9,18,35,67,131,257,505,996,1973,3915,7781,15486,30855, %T A351983 61527,122764,245069,489412,977673,1953515,3904108,7803545,15599618, %U A351983 31187269,62355347,124679883,249310255,498540890,996953659,1993701032,3987069747,7973603891 %N A351983 Number of integer compositions of n with exactly one part above the diagonal. %H A351983 Andrew Howroyd, <a href="/A351983/b351983.txt">Table of n, a(n) for n = 0..1000</a> %e A351983 The a(2) = 1 through a(6) = 18 compositions: %e A351983 (2) (3) (4) (5) (6) %e A351983 (21) (13) (14) (15) %e A351983 (22) (32) (42) %e A351983 (31) (41) (51) %e A351983 (211) (131) (114) %e A351983 (212) (132) %e A351983 (221) (141) %e A351983 (311) (213) %e A351983 (2111) (222) %e A351983 (312) %e A351983 (321) %e A351983 (411) %e A351983 (1311) %e A351983 (2112) %e A351983 (2121) %e A351983 (2211) %e A351983 (3111) %e A351983 (21111) %t A351983 pless[y_]:=Length[Select[Range[Length[y]],#<y[[#]]&]]; %t A351983 Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n],pless[#]==1&]],{n,0,10}] %o A351983 (PARI) %o A351983 S(v,u,c=0)={vector(#v, k, c + sum(i=1, k-1, v[k-i]*u[i]))} %o A351983 seq(n)={my(v=vector(1+n), s=0); v[1]=1; for(i=1, n, v=S(v, vector(n, j, if(j>i,'x,1)), O(x^2)); s+=apply(p->polcoef(p,1), v)); s} \\ _Andrew Howroyd_, Jan 02 2023 %Y A351983 The version for permutations is A000295, weak A057427. %Y A351983 The version for partitions is A002620, weak A001477. %Y A351983 The weak version is A177510. %Y A351983 The version for fixed points is A240736, nonfixed A352520. %Y A351983 This is column k = 1 of A352524; column k = 0 is A008930. %Y A351983 A238349 counts compositions by fixed points, first column A238351. %Y A351983 A352521 counts compositions by strong nonexcedances, first column A219282. %Y A351983 A352522 counts compositions by weak nonexcedances, first column A238874. %Y A351983 A352523 counts compositions by nonfixed points, first column A010054. %Y A351983 A352524 counts compositions by strong excedances, first column A008930. %Y A351983 A352525 counts compositions by weak excedances, first column A177510. %Y A351983 Cf. A088218, A098825, A115994, A238352, A330644, A352516. %K A351983 nonn %O A351983 0,4 %A A351983 _Gus Wiseman_, Apr 02 2022 %E A351983 Terms a(21) and beyond from _Andrew Howroyd_, Jan 02 2023