This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A351986 #16 Mar 17 2022 23:58:19 %S A351986 -4,-2,-1,-1,-1,-1,-1,-2,-1,1,-1,2,-4,2,-1,1,-18,-6,-2,-1,-2,-2,-2,-3, %T A351986 -2,2,-2,3,-18,6,-2,1,2,-2,2,-1,2,2,2,1,-48,-12,-3,-1,-12,-6,-3,-2,-3, %U A351986 -3,-3,-4,-3,3,-3,4,-12,6,-3,2,-48,12,-3,1,12,-6,3,-1,3,-3,3,-2,3,3,3,2,12,6,3,1 %N A351986 Four-column table read by rows, giving quadruples of integers [w,x,y,z] such that y^2 - y - x*z = 0 and x^2 = w*y with w*y != 0 and y != 1, sorted by the absolute value of y with the negatives first, then by x in ascending order. %C A351986 When [w,x,y,z] is a row, f(a,b,c) = w*a*b*c + x*(a*b + a*c + b*c) + y*(a+b+c) + z is associative in the following sense. f((a,b,c),d,e) = f(a,f(b,c,d),e) = f(a,b,f(c,d,e)) for all a,b,c,d,e. f(a,b,c) is commutative because of its symmetry. %C A351986 For each quadruple, the corresponding f(a,b,c) has a unique zero element (call it theta), meaning f(a,b,theta) = f(a,theta,b) = f(theta,a,b) = theta for all a,b. Theta = -y/x = - x/w. f(a,b,c) also has not one but two identity elements (id_1 and id_2), meaning f(a,id_1,id_1) = f(id_1,a,id_1) = f(id_1,id_1,a) = a for all a and f(a,id_2,id_2) = f(id_2,a,id_2) = f(id_2,id_2,a) = a for all a. Id = (-y +- sqrt(y))/x = theta +- sqrt(y)/x. Thus theta = (id_1 + id_2)/2. %C A351986 The identity elements and theta are integers when y is a square and x divides sqrt(y). %H A351986 David Lovler, <a href="/A351986/b351986.txt">Table of n, a(n) for n = 1..10792</a> %H A351986 David Lovler, <a href="/A351986/a351986.txt">The first 2698 quadruples for y up to 100</a>. %e A351986 Table begins: %e A351986 [ w, x, y, z] %e A351986 ------------------- %e A351986 [ -4, -2, -1, -1]; %e A351986 [ -1, -1, -1, -2]; %e A351986 [ -1, 1, -1, 2]; %e A351986 [ -4, 2, -1, 1]; %e A351986 [-18, -6, -2, -1]; %e A351986 [ -2, -2, -2, -3]; %e A351986 [ -2, 2, -2, 3]; %e A351986 [-18, 6, -2, 1]; %e A351986 [ 2, -2, 2, -1]; %e A351986 [ 2, 2, 2, 1]; %e A351986 [-48, -12, -3, -1]; %e A351986 [-12, -6, -3, -2]; %e A351986 [ -3, -3, -3, -4]; %e A351986 [ -3, 3, -3, 4]; %e A351986 [-12, 6, -3, 2]; %e A351986 [-48, 12, -3, 1]; %e A351986 [ 12, -6, 3, -1]; %e A351986 [ 3, -3, 3, -2]; %e A351986 [ 3, 3, 3, 2]; %e A351986 [ 12, 6, 3, 1]; %e A351986 ... %o A351986 (PARI) { my(y=1); fordiv (y^2+y, x, print([-((y^2+y)/x)^2/y, -(y^2+y)/x, -y, -x]) ); %o A351986 fordiv (y^2+y, x, print([-(x^2/y), x, -y, (y^2+y)/x]) ); %o A351986 for (y = 2, 6, fordiv (y^2+y, x, if(type(w = -(((y^2+y)/x)^2)/y)=="t_INT", print([w, -(y^2+y)/x, -y, -x]) )); %o A351986 fordiv (y^2+y, x, if(type(w = -x^2/y)=="t_INT", print([w, x, -y, (y^2+y)/x]) )); %o A351986 fordiv (y^2-y, x, if(type(w = (((y^2-y)/x)^2)/y)=="t_INT", print([w, -(y^2-y)/x, y, -x]) )); %o A351986 fordiv (y^2-y, x, if(type(w = x^2/y)=="t_INT", print([w, x, y, (y^2-y)/x]) )) )} %Y A351986 Cf. A332083. %Y A351986 The rows of A351581 are a subset. %K A351986 sign,tabf %O A351986 1,1 %A A351986 _David Lovler_, Feb 27 2022