cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351989 Fibonacci(p-J(p,5)) mod p^3, where p is the n-th prime and J is the Jacobi symbol.

This page as a plain text file.
%I A351989 #38 Feb 28 2022 19:34:32
%S A351989 2,3,5,21,55,377,2584,2584,9867,754,27683,34706,55391,77486,2961,
%T A351989 49237,178121,151768,269809,180340,137459,440741,304859,634125,3589,
%U A351989 224018,925249,689508,276097,389850,1566164,488892,101791,731140,1838362,3406409,31557,2311014,3158805,4571698,2914836,3267050,1294789,6599056,7246251,159399
%N A351989 Fibonacci(p-J(p,5)) mod p^3, where p is the n-th prime and J is the Jacobi symbol.
%C A351989 Very similar to A113650 but modulo p^3.
%t A351989 a[n_]:= Mod[Fibonacci[(n-JacobiSymbol[n, 5])], Power[n, 3]]; Table[a[Prime[n]], {n, 50}]
%o A351989 (Sage)
%o A351989 p = 1
%o A351989 while p < 200:
%o A351989     print(fibonacci(p-jacobi_symbol(p,5))%pow(p,3), end=', ')
%o A351989     p = next_prime(p)
%o A351989 (PARI) a(n) = my(p=prime(n)); lift(Mod([1, 1; 1, 0]^(p-kronecker(p, 5)), p^3)[1, 2]); \\ _Michel Marcus_, Feb 28 2022
%o A351989 (Python)
%o A351989 from sympy import prime, fibonacci
%o A351989 from sympy.ntheory import jacobi_symbol
%o A351989 def A351989(n): return fibonacci((p := prime(n))-jacobi_symbol(p,5)) % p**3 # _Chai Wah Wu_, Feb 28 2022
%Y A351989 Cf. A113650.
%K A351989 nonn,easy
%O A351989 1,1
%A A351989 _Javier Rivera Romeu_, Feb 27 2022