cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352005 Expansion of e.g.f. Product_{k>=1} (1 + x^prime(k))^(1/prime(k)!).

This page as a plain text file.
%I A352005 #13 Mar 01 2022 01:34:30
%S A352005 1,0,1,1,-3,11,-5,-83,-2919,18838,118371,583826,-27365327,-12780260,
%T A352005 405396069,32646641041,-232690739007,4816360930145,-46984166770283,
%U A352005 -541620811734953,-49355727191815599,907100235094018036,10877428540752188625,139350853273096742762
%N A352005 Expansion of e.g.f. Product_{k>=1} (1 + x^prime(k))^(1/prime(k)!).
%F A352005 E.g.f.: exp( Sum_{k>=1} A352014(k)*x^k/k! ) where A352014(k) = Sum_{p|k, p prime} (-1)^(k/p+1) * (k-1)!/(p-1)!.
%o A352005 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(prod(k=1, N, (1+x^k)^(isprime(k)/k!))))
%o A352005 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sumdiv(k, d, isprime(d)*(-1)^(k/d+1)*(k-1)!/(d-1)!)*x^k/k!))))
%Y A352005 Cf. A298906, A352003, A352004, A352014.
%K A352005 sign
%O A352005 0,5
%A A352005 _Seiichi Manyama_, Feb 28 2022