This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A352023 #38 Mar 18 2022 00:09:05 %S A352023 2,3,5,7,37,79,239,4649,62003,538987,35121409,265371653 %N A352023 Primes p such that 1/p does not contain digit '9' in its decimal expansion. %C A352023 Terms a(1)-a(9) and a(10)-a(12) were respectively found by _Giovanni Resta_ and _Robert Israel_ (comments in A333237). %C A352023 The corresponding largest digit in the decimal expansion of 1/a(n) is A352024(n). %C A352023 If it exists, a(13) > 2.7*10^8. %C A352023 a(13) > 1360682471 (with A187614). - _Jinyuan Wang_, Mar 03 2022 %C A352023 a(13) <= 5363222357, a(14) <= 77843839397. - _David A. Corneth_, Mar 03 2022 %e A352023 The largest digit in the decimal expansion of 1/7 = 0.142857142857... is 8 < 9, hence 7 is a term. %p A352023 f:= proc(n) local m, S, r; %p A352023 m:= 1; S:= {1}; %p A352023 do %p A352023 r:= floor(m/n); %p A352023 if r = 9 then return true fi; %p A352023 m:= (m - r*n)*10; %p A352023 if member(m, S) then return false fi; %p A352023 S:= S union {m}; %p A352023 od %p A352023 end proc: %p A352023 remove(f, [seq(ithprime(i),i=1..10^5)]); # _Robert Israel_, Mar 16 2022 %t A352023 Select[Range[10^5], PrimeQ[#] && FreeQ[RealDigits[1/#][[1, 1]], 9] &] (* _Amiram Eldar_, Feb 28 2022 *) %o A352023 (PARI) isok(p) = if (isprime(p), my(m2=valuation(p, 2), m5=valuation(p, 5)); vecmax(digits(floor(10^(max(m2,m5) + znorder(Mod(10, p/2^m2/5^m5))+1)/p))) < 9); \\ _Michel Marcus_, Feb 28 2022 %o A352023 (Python) %o A352023 from sympy import n_order, nextprime %o A352023 from itertools import islice %o A352023 def A352023_gen(): # generator of terms %o A352023 yield from (2,3,5) %o A352023 p = 7 %o A352023 while True: %o A352023 if '9' not in str(10**(n_order(10, p))//p): %o A352023 yield p %o A352023 p = nextprime(p) %o A352023 A352023_list = list(islice(A352023_gen(),9)) # _Chai Wah Wu_, Mar 03 2022 %Y A352023 Subsequence of A187614. %Y A352023 Cf. A004023, A333237, A352024. %K A352023 nonn,base,more %O A352023 1,1 %A A352023 _Bernard Schott_, Feb 28 2022