cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352031 Sum of the cubes of the odd proper divisors of n.

This page as a plain text file.
%I A352031 #25 Apr 14 2025 17:39:11
%S A352031 0,1,1,1,1,28,1,1,28,126,1,28,1,344,153,1,1,757,1,126,371,1332,1,28,
%T A352031 126,2198,757,344,1,3528,1,1,1359,4914,469,757,1,6860,2225,126,1,9632,
%U A352031 1,1332,4257,12168,1,28,344,15751,4941,2198,1,20440,1457,344,6887,24390,1,3528,1
%N A352031 Sum of the cubes of the odd proper divisors of n.
%H A352031 Seiichi Manyama, <a href="/A352031/b352031.txt">Table of n, a(n) for n = 1..10000</a>
%H A352031 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A352031 a(n) = Sum_{d|n, d<n, d odd} d^3.
%F A352031 G.f.: Sum_{k>=1} (2*k-1)^3 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F A352031 From _Amiram Eldar_, Oct 11 2023: (Start)
%F A352031 a(n) = A051000(n) - n^3*A000035(n).
%F A352031 Sum_{k=1..n} a(k) ~ c * n^4, where c = (zeta(4)-1)/8 = 0.0102904042... . (End)
%e A352031 a(10) = 126; a(10) = Sum_{d|10, d<10, d odd} d^3 = 1^3 + 5^3 = 126.
%t A352031 f[2, e_] := 1; f[p_, e_] := (p^(3*e+3) - 1)/(p^3 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^3, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%t A352031 Table[Total[Select[Most[Divisors[n]],OddQ]^3],{n,70}] (* _Harvey P. Dale_, Apr 14 2025 *)
%o A352031 (PARI) a(n) = sumdiv(n/2^valuation(n,2), d, if ((d<n), d^3)); \\ _Michel Marcus_, Mar 02 2022
%Y A352031 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), this sequence (k=3), A352032 (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
%Y A352031 Cf. A000035, A013662, A051000.
%K A352031 nonn,easy
%O A352031 1,6
%A A352031 _Wesley Ivan Hurt_, Mar 01 2022