cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352032 Sum of the 4th powers of the odd proper divisors of n.

This page as a plain text file.
%I A352032 #20 Oct 11 2023 03:54:09
%S A352032 0,1,1,1,1,82,1,1,82,626,1,82,1,2402,707,1,1,6643,1,626,2483,14642,1,
%T A352032 82,626,28562,6643,2402,1,51332,1,1,14723,83522,3027,6643,1,130322,
%U A352032 28643,626,1,196964,1,14642,57893,279842,1,82,2402,391251,83603,28562,1,538084,15267
%N A352032 Sum of the 4th powers of the odd proper divisors of n.
%H A352032 Seiichi Manyama, <a href="/A352032/b352032.txt">Table of n, a(n) for n = 1..10000</a>
%H A352032 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A352032 a(n) = Sum_{d|n, d<n, d odd} d^4.
%F A352032 G.f.: Sum_{k>=1} (2*k-1)^4 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F A352032 From _Amiram Eldar_, Oct 11 2023: (Start)
%F A352032 a(n) = A051001(n) - n^4*A000035(n).
%F A352032 Sum_{k=1..n} a(k) ~ c * n^5, where c = (zeta(5)-1)/10 = 0.0036927755... . (End)
%e A352032 a(10) = 626; a(10) = Sum_{d|10, d<10, d odd} d^4 = 1^4 + 5^4 = 626.
%t A352032 f[2, e_] := 1; f[p_, e_] := (p^(4*e+4) - 1)/(p^4 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^4, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%Y A352032 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), this sequence (k=4), A352033 (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
%Y A352032 Cf. A000035, A013663, A051001.
%K A352032 nonn,easy
%O A352032 1,6
%A A352032 _Wesley Ivan Hurt_, Mar 01 2022