cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352033 Sum of the 5th powers of the odd proper divisors of n.

This page as a plain text file.
%I A352033 #20 Oct 11 2023 03:54:04
%S A352033 0,1,1,1,1,244,1,1,244,3126,1,244,1,16808,3369,1,1,59293,1,3126,17051,
%T A352033 161052,1,244,3126,371294,59293,16808,1,762744,1,1,161295,1419858,
%U A352033 19933,59293,1,2476100,371537,3126,1,4101152,1,161052,821793,6436344,1,244,16808,9768751
%N A352033 Sum of the 5th powers of the odd proper divisors of n.
%H A352033 Seiichi Manyama, <a href="/A352033/b352033.txt">Table of n, a(n) for n = 1..10000</a>
%H A352033 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A352033 a(n) = Sum_{d|n, d<n, d odd} d^5.
%F A352033 G.f.: Sum_{k>=1} (2*k-1)^5 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F A352033 From _Amiram Eldar_, Oct 11 2023: (Start)
%F A352033 a(n) = A051002(n) - n^5*A000035(n).
%F A352033 Sum_{k=1..n} a(k) ~ c * n^6, where c = (zeta(6)-1)/12 = 0.0014452551... . (End)
%e A352033 a(10) = 3126; a(10) = Sum_{d|10, d<10, d odd} d^5 = 1^5 + 5^5 = 3126.
%t A352033 Table[Total[Select[Most[Divisors[n]],OddQ]^5],{n,50}] (* _Harvey P. Dale_, May 01 2023 *)
%t A352033 f[2, e_] := 1; f[p_, e_] := (p^(5*e+5) - 1)/(p^5 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^5, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%Y A352033 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), this sequence (k=5), A352034 (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
%Y A352033 Cf. A000035, A013664, A051002.
%K A352033 nonn,easy
%O A352033 1,6
%A A352033 _Wesley Ivan Hurt_, Mar 01 2022