cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A352034 Sum of the 6th powers of the odd proper divisors of n.

This page as a plain text file.
%I A352034 #24 Sep 15 2024 15:47:35
%S A352034 0,1,1,1,1,730,1,1,730,15626,1,730,1,117650,16355,1,1,532171,1,15626,
%T A352034 118379,1771562,1,730,15626,4826810,532171,117650,1,11406980,1,1,
%U A352034 1772291,24137570,133275,532171,1,47045882,4827539,15626,1,85884500,1,1771562,11938421,148035890
%N A352034 Sum of the 6th powers of the odd proper divisors of n.
%H A352034 Seiichi Manyama, <a href="/A352034/b352034.txt">Table of n, a(n) for n = 1..10000</a>
%H A352034 <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>.
%F A352034 a(n) = Sum_{d|n, d<n, d odd} d^6.
%F A352034 G.f.: Sum_{k>=1} (2*k-1)^6 * x^(4*k-2) / (1 - x^(2*k-1)). - _Ilya Gutkovskiy_, Mar 02 2022
%F A352034 For odd n >1, a(n) = A321810(n)-n^6; for even n, a(n) = A321810(n). - _R. J. Mathar_, Aug 15 2023
%F A352034 Sum_{k=1..n} a(k) ~ c * n^7, where c = (zeta(7)-1)/14 = 0.0005963769... . - _Amiram Eldar_, Oct 11 2023
%e A352034 a(10) = 15626; a(10) = Sum_{d|10, d<10, d odd} d^6 = 1^6 + 5^6 = 15626.
%t A352034 f[2, e_] := 1; f[p_, e_] := (p^(6*e+6) - 1)/(p^6 - 1); a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - If[OddQ[n], n^6, 0]; Array[a, 60] (* _Amiram Eldar_, Oct 11 2023 *)
%t A352034 Table[Total[Select[Most[Divisors[n]],OddQ]^6],{n,50}] (* _Harvey P. Dale_, Sep 15 2024 *)
%Y A352034 Sum of the k-th powers of the odd proper divisors of n for k=0..10: A091954 (k=0), A091570 (k=1), A351647 (k=2), A352031 (k=3), A352032 (k=4), A352033 (k=5), this sequence (k=6), A352035 (k=7), A352036 (k=8), A352037 (k=9), A352038 (k=10).
%Y A352034 Cf. A013665, A321810.
%K A352034 nonn,easy
%O A352034 1,6
%A A352034 _Wesley Ivan Hurt_, Mar 01 2022